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Background: The medium cutoff (MCO) dialyzer increases the removal of several middle molecules more effectively than high-flux 
hemodialysis (HD). However, comparative data addressing the efficacy and safety of MCO dialyzers vs. postdilution hemodiafiltration 
(HDF) in Korean patients are lacking. 
Methods: Nine patients with chronic HD were included in this pre-post study. Patients underwent HD with an MCO dialyzer for 4 
weeks, followed by a 2-week washout period using a high-flux dialyzer to minimize carryover effects, and then turned over to postdilu-
tion HDF for 4 weeks. Reduction ratios and differences in the uremic toxins before and after dialysis were calculated from the MCO di-
alysis, postdilution HDF, and high-flux HD. In the in vitro study, EA.hy926 cells were incubated with dialyzed serum. 
Results: Compared to postdilution HDF, the MCO dialyzer achieved significantly higher reduction ratios for larger middle molecules 
(myoglobin, kappa free light chain [κFLC], and lambda FLC [λFLC]). Similarly, the differences in myoglobin, κFLC, and λFLC concentra-
tions before and after the last dialysis session were significantly greater in MCO dialysis than in postdilution HDF. The expression of 
Bax and nuclear factor κB was decreased in the serum after dialysis with the MCO dialyzer than with HDF. 
Conclusion: Compared with high-volume postdilution HDF, MCO dialysis did not provide greater removal of molecules below 12,000 
Da, whereas it was superior in the removal of larger uremic middle molecule toxins in patients with kidney failure. Moreover, these re-
sults may be expected to have an anti-apoptotic effect on the human endothelium. 
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Introduction 

Kidney failure is characterized by a progressive loss of 

elimination capacity, followed by the accumulation of 

various compounds referred to as uremic toxins [1]. With 

growing concern about the association of middle mol-

ecules or larger low-molecular-weight proteins with in-

creased mortality and morbidity of chronic hemodialysis 

(HD) patients, new dialysis modalities, including convec-

tive therapy, have been developed to remove these uremic 

toxins [2]. Hemodiafiltration (HDF) provides both effective 

diffusive clearance of small molecules and superior remov-
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al of middle molecules. Previous studies have shown that 

HDF can reduce intradialytic hypotension, amyloidosis, 

and accelerated atherosclerosis [3–6]. Moreover, a previous 

randomized controlled trial supported the superiority of 

high-convective-volume HDF in reducing all-cause mortal-

ity when compared with high-flux HD [7], possibly due to 

more effective removal of larger uremic retention solutes. 

However, several meta-analyses did not find a significant 

difference in the overall mortality between patients treated 

with HDF and those treated with HD, because some trials 

were of suboptimal quality and underpowered [8–10]. 

In this regard, medium cutoff (MCO) dialyzers utilize a 

novel class of membranes that are designed to increase the 

removal of larger middle molecules, yet have low permea-

bility for albumin [11]. Specifically, MCO membranes have 

slightly larger pores and a tighter pore distribution than 

high-flux membranes [12]. Although a few studies have 

compared the removal of uremic toxins by MCO dialyzers or 

high-flux HD [13–16], comparisons between MCO dialyz-

ers and high-convective volume postdilution HDF in terms 

of the removal of large uremic molecules, particularly free 

light chains (FLC), and endothelial toxicity in dialysis pa-

tients are scarce. In this study, we compared the efficacy of 

the reduction of middle molecules between MCO dialyzers 

and high-volume postdilution HDF. Additionally, we per-

formed an in vitro study to determine whether filtered se-

rum obtained after dialysis with an MCO dialyzer was less 

toxic to EA.hy926 human vascular endothelial cells than 

serum obtained after high-volume HDF. 

Methods 

Patients and study design 

Maintenance HD patients participated in this prospective, 

controlled, open-label, nonrandomized, single-center pre-

post study. Among HD patients aged ≥20 years, 12 were 

enrolled in the study. However, three patients dropped out 

due to withdrawal of consent during the eligibility period. 

Patients received HD with an MCO dialyzer for 4 weeks, 

followed by a 2-week washout period using a high-flux 

dialyzer to minimize carryover effects. Subsequently, the 

patients turned over to postdilution HDF for 4 weeks. The 

present study used serum samples collected from patients 

at the Chonnam National University Hwasun Hospital. 

The study protocol was approved by the Institutional Re-

view Board of the Chonnam National University Hwasun 

Hospital (No. CNUHH-2017-186). All patients provided 

written informed consent before inclusion in the study. 

Dialysis materials and treatment procedures 

Patients underwent HD performed with either a Theranova 

400 dialyzer (Baxter International Inc.) or an FX 60 or 80 di-

alyzer (Fresenius Medical Care) according to body surface 

area. All patients underwent 4 hours of dialysis three times 

a week using Artis Physio machines (Baxter International 

Inc.). Online HDF was conducted in a postdilution pres-

sure-controlled mode with a target convective ultrafiltra-

tion volume of ≥20 L. The dialysis regimens of each patient, 

including blood flow, dialysate flow, and treatment dura-

tion per session, were not altered.  

Determination of small and middle molecules 

We measured differences in the clearance of uremic toxins 

provided by the two treatment options. The uremic toxins 

were classified into the following types as specified by the 

European Union Toxin Working Group: small molecules, 

including blood urea nitrogen (BUN) (60 Da), creatinine 

(113 Da), and uric acid (168 Da); middle molecules, in-

cluding β2-microglobulin (β2MG) (11,800 Da), myoglobin 

(17,800 Da), kappa FLC (κFLC, 25,000 Da), and lambda 

FLC (λFLC, 50,000 Da); and albumin (66,000 Da). 

Clinical outcomes 

Baseline clinical information was collected, including 

age, sex, body weight, height, dialysis vintage, and type of 

vascular access, and Kt/V was calculated using the sec-

ond-generation formula for single-pool values to deter-

mine the appropriate level of HD for each patient [17]. The 

efficacy of each dialysis treatment was assessed by calcu-

lating the reduction ratios (RRs) and differences in the ure-

mic toxins before and after each MCO dialysis, postdilution 

HDF, and high-flux HD at the end of the 2- or 4-week treat-

ment period. The RRs were calculated using the following 

formula:  

Reduction ratio (%) =    1 – × 100
Cpost 

Cpre
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where Cpre and Cpost are the measured concentrations of the 

solute before and at the end of the treatments, respectively. 

The corrected plasma concentrations of the middle mole-

cules were determined using the following formula [18]: 

 

where BWpre and BWpost are the body weights before and af-

ter dialysis, respectively.  

In vitro study 

Blood samples were obtained from patients at the last di-

alysis session of the MCO dialysis and postdilution HDF 

treatment periods, and the serum was separated by centrif-

ugation and transferred to contamination-free bottles. All 

samples were stored at –80 °C until analysis. The EA.hy926 

human vascular endothelial cell line (American Type Cul-

ture Collection [ATCC]) was cultured in Dulbecco’s mod-

ified Eagle’s medium (30-2002, ATCC) at 37 °C in 5% CO2. 

Heparin (0.6 IU/mL) was added to the incubation medium 

for all experiments. The cells were incubated with 2.5% se-

rum from patients or 2.5% fetal bovine serum for 16 hours. 

The final concentration and duration of serum incubation 

were determined to be based on the appropriate viscosity 

of the incubation media and the activation of apoptotic 

proteins (Supplementary Fig. 1; available online). 

Western blot analyses and primary antibodies 

Western blot analyses were performed as described previ-

ously [19]. The cells were harvested, resuspended in lysis 

buffer, and briefly sonicated. After centrifugation, the su-

pernatant was prepared as a protein extract. Equal concen-

trations of protein were separated on 8% or 12% sodium 

dodecyl sulfate-polyacrylamide gels, and the proteins were 

transferred onto nitrocellulose membranes. Densitometry 

was performed using Scion Image software (Scion Corpo-

ration). The experiments were repeated at least twice. The 

primary and secondary antibodies used for western blot-

ting are listed in Supplementary Table 1 (available online).  

1 + BWPre−BWPost

0.2 × BWPost

Corrected concentration =   
ConcentrationPost 

Cell viability test 

Cell viability was determined using the CyQUANT MTT cell 

viability assay kit (V13154; Invitrogen). Absorbance at 570 

nm was detected using a 96-well microplate reader (BioTek 

Instruments). Cell viability was expressed as the fraction of 

the surviving cells relative to the fetal-bovine-serum-treat-

ed cells.  

Statistical analyses 

The sample size was determined on the basis of the β2MG 

concentrations. When the effect size was assumed by the 

mean and standard deviation of differences of β2MG at the 

level of the in the pre- and postdialysis of both HDF and 

the MCO dialyzer, eight patients were calculated to pro-

vide 80% power at a two-sided alpha level of 0.05 using the 

Wilcoxon signed-rank test. The expected dropout rate was 

assumed to be 20%; accordingly, at least 10 patients were 

required initially. The results were expressed as the median 

and interquartile range. The statistical significance of dif-

ferences between the treatments was determined using the 

Friedman or Wilcoxon signed-rank test. Carryover effects 

were assessed by comparing the predialysis concentrations 

of uremic toxins in the first sessions of MCO and HDF. 

For a more conservative interpretation, p-values of <0.017 

(Bonferroni method) were considered statistically signifi-

cant for multiple comparisons. For the in vitro studies, the 

statistical significance of differences was determined using 

an unpaired Student t test or one-way analysis of variance 

followed by a post hoc Tukey test. All statistical analyses 

were performed using IBM SPSS version 25.0 (IBM Corp.) 

and GraphPad Prism version 9.1.2 (GraphPad Software, 

Inc.). 

Results 

Baseline characteristics of patients 

Baseline characteristics are shown in Table 1. The median 

age of all patients was 58.0 years (interquartile range [IQR], 

50.0–69.5 years), and 55.6% were male. The median Kt/V 

value was 1.58 (IQR, 1.46–1.78). Only one patient under-

went dialysis using an arteriovenous graft. The median 

values of blood flow rate and dialysis vintage were 270 mL/

https://www.krcp-ksn.org/upload/media/j-krcp-21-287-Supplementary-Figure-1.pdf
https://www.krcp-ksn.org/upload/media/j-krcp-21-287-Supplementary-Table-1.pdf
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Table 1. Clinical characteristics of the study patients

Characteristic Median
(interquartile range)

Patient
1 2 3 4 5 6 7 8 9

Age (yr) 58.0 (50–69.5) 41 56 50 60 50 70 58 69 79
Sex Female Female Female Male Male Male Male Male Female
Body mass index (kg/m2) 23.0 (21.5–23.6) 21.9 23.0 21.3 20.4 23.8 21.7 23.4 23.2 29.0
Body surface area (m2) 1.69 (1.56–1.76) 1.58 1.55 1.41 1.64 1.82 1.76 1.71 1.77 1.69
Kt/V 1.58 (1.46–1.78) 1.58 1.83 1.9 1.42 1.73 1.39 1.50 1.50 1.58
Blood flow rate,(mL/min) 270 (250–285) 260 270 230 270 350 270 300 250 270
Dialysis vintage (yr) 8.8 (6.1–18.6) 5.9 6.2 18.9 18.2 21 8.8 12.5 2.3 6.5
Vascular access Fistula Fistula Fistula Fistula Fistula Fistula Fistula Fistula Graft
Dialyzer FX80 FX80 FX60 FX80 FX80 FX80 FX80 FX80 FX80

Table 2. Comparison of blood flow rates, filtration fractions, and convection volumes among patients who underwent high-flux HD for 4 
weeks, then postdilution HDF washout for 2 weeks, and then turned to MCO dialysis for 4 weeks

Variable High-flux HD,
1 wk

Postdilution HDF MCO dialysis,
p-valuea

Baseline 4 wk p-valuea 4 wk
Blood flow rate (mL/min) 270 (250–285) 270 (250–290) 270 (250–290) >0.99 250 (220–285) 0.07
Filtration fraction (%) NA 34.0 (32.8–36.5) 35.0 (33.5–37.0) 0.39 NA
Convection volume (L) NA 21.0 (18.8–22.9) 23.3 (20.9–24.3) 0.13 NA
Convection volume/BSA (L) NA 12.9 (11.7–13.5) 13.5 (13.2–14.4) 0.16 NA

Data are expressed as median (interquartile range).
BSA, body surface area; HD, hemodialysis; HDF, hemodiafiltration; MCO, medium cutoff membrane; NA, not applicable.
aFriedman test.

min (IQR, 250–285 mL/ min) and 8.8 years (IQR, 6.1–18.6 

years), respectively. The changes in blood flow rate did not 

differ between the high-flux HD, postdilution HDF, and 

MCO dialysis treatments (p = 0.07) (Table 2). In the first 

session of online HDF, the median value of the achieved 

convection volume was 21.0 L/session (IQR, 18.8–22.9 L/

session). High convection volume with or without adjust-

ment for body surface area was maintained at the postdi-

lution HDF until the last dialysis session (23.3 L and 13.5 L, 

respectively) (Table 2). The predialysis concentrations of 

uremic toxins in serum samples obtained at the first MCO 

and postdilution HDF dialysis sessions were not signifi-

cantly different. Therefore, there was no evidence of carry-

over effects (Supplementary Table 2; available online). 

Treatment with the medium cutoff dialyzer increased 
reduction ratios of small and middle uremic toxins com-
pared to postdilution hemodiafiltration 

We compared the pre- and postdialysis serum concen-

trations of small and middle uremic toxins during the last 

session of each dialysis modality (Table 3). Of note, BUN, 

creatinine, uric acid, β2MG, myoglobin, κFLC, and λFLC 

concentrations were significantly lower after dialysis com-

pared with predialysis measurements regardless of dialysis 

modality. Differences in pre- and postdialysis concentra-

tions of BUN, creatinine, and uric acid did not differ be-

tween high-flux HD, postdilution HDF, and the MCO dia-

lyzer (Table 4); however, differences in the values for β2MG, 

myoglobin, κFLC, and λFLC were significantly greater after 

MCO dialysis. In particular, compared with postdilution 

HDF, differences in myoglobin and λFLC were significantly 

greater after MCO dialysis.  

Next, we investigated the RRs of small and middle uremic 

toxins in patients receiving postdilution HDF and MCO 

dialysis at the last session of each dialysis modality (Fig. 1; 

Supplementary Table 3, available online). 

In the post hoc analyses, the RRs of β2MG were not differ-

ent between the postdilution HDF and MCO dialysis (67.9% 

± 11.7% vs. 71.6% ± 5.7%, p = 0.26). However, MCO dialysis 

resulted in a significantly greater RR for myoglobin, κFLC, 

and λFLC compared with postdilution HDF. Interestingly, 

https://www.krcp-ksn.org/upload/media/j-krcp-21-287-Supplementary-Table-2.pdf
https://www.krcp-ksn.org/upload/media/j-krcp-21-287-Supplementary-Table-3.pdf
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Figure 1. Reduction ratios for small and middle uremic toxins in patients who underwent MCO dialysis for 4 weeks, high-flux HD 
washout for 2 weeks, and then turned to postdilution HDF for 4 weeks.
BUN, blood urea nitrogen; β2MG, β2-microglobulin; FLC, free light chain; HD, hemodialysis; HDF, hemodiafiltration; MCO, medium cut-
off membrane; NS, not statistically significant.
***p < 0.001.

MCO dialysis produced a three-fold greater RR for λFLC 

compared with postdilution HDF (49.8% ± 6.5% vs. 15.8% ± 

8.5%, p = 0.008), while the RRs high-flux HD and postdilu-

tion HDF did not differ (15.3% ± 8.0% vs. 15.8% ± 8.5%, p = 

0.95). A comparison of albumin loss showed no significant 

differences between postdilution HDF and MCO dialysis 

(Table 4; Supplementary Table 3, available online). 

Treatment with the medium cutoff dialyzer reduced apop-
tosis of a human vascular endothelial cell line through 
activation of the NF-κB signaling pathway 

To examine whether the remaining uremic toxins in serum 

after each dialysis modality exacerbated vascular injury, 

we performed in vitro studies to explore the effects of pu-

rified sera on vascular apoptosis and the nuclear factor κB 

(NF-κB) signaling pathway (Fig. 2A, B). After incubation of 

human endothelial cells with serum obtained after MCO 

dialysis, the ratio of Bax/Bcl-2 expression was lower than 

after postdilution HDF, as was NF-κB p65 expression. In 
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Figure 2. Serum obtained from patients after completing 4 weeks of MCO dialysis and again after 4 weeks of postdilution HDF 
was added to human vascular endothelial cells (2.5%) for 16 hours, and the expression of Bax, Bcl-2, and NF-κB p65 was as-
sessed. (A) Western blot analyses of Bax, Bcl-2, and NF-κB p65 protein expression in human endothelial cells incubated with serum af-
ter each dialysis modality. (B) Relative protein intensities are presented. The values for control cells incubated with fetal bovine serum 
were set to 1. (C) Cell viability assay. All values are presented as the mean ± standard error of the mean.
HDF, hemodiafiltration; MCO, medium cutoff membrane; NF-κB, nuclear factor κB; NS, not statistically significant. **p < 0.01; ***p < 
0.001.

addition, we found that recovered cell viability in endothe-

lial cells treated with MCO serum compared with serum 

after postdilution HDF. We added this in the results section 

(Fig. 2C). 

Discussion 

Among the uremic retention compounds, middle mole-

cules or low-molecular-weight proteins with molecular 

weights ranging from approximately 5,000 to 50,000 Da, in-

cluding β2MG, myoglobin, FLC, parathyroid hormone, fi-
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broblast growth factor-23, and retinol-binding protein, are 

considered to have detrimental clinical effects in patients 

with uremia [20]. Plasma myoglobin concentrations are 

typically greater in patients with both pre- and postdialysis 

than in healthy controls [21]. Furthermore, β2MG and FLC 

have been recognized as surrogate markers for predicting 

mortality in patients undergoing HD [22,23]. 

This pre-post study revealed that the MCO dialyzer had 

a high efficacy for the removal of β2MG, myoglobin, κFLC, 

and λFLC. Additionally, compared with high convection 

volume postdilution HDF, the MCO dialyzer treatment 

showed a greater RR for myoglobin, κFLC, and λFLC. 

Previous studies have shown the superiority of the MCO 

dialyzer over high-flux HD in the reduction of β2MG, κFLC, 

λFLC, myoglobin, interleukin (IL)-1β, and IL-6 [13–15]. 

In addition, a previous randomized crossover trial also 

showed that mRNA expression of the inflammation mark-

ers tumor necrosis factor-α and IL-6 were reduced to a 

greater extent with the MCO dialyzer than with high-flux 

HD [16]. Similar to our results, a recent multicenter, ran-

domized controlled study in which 86 patients received 24 

weeks of treatment with the MCO dialyzer demonstrated 

a 33% RR of λFLC, while the RR was only 17% when using 

a similarly sized high-flux dialyzer [24]. However, these 

results are not surprising when considering the character-

istics of an MCO membrane, which has a high-retention 

onset, and a cutoff value that limits the loss of albumin 

compared to conventional high-flux membranes [25,26]. 

Consequently, the MCO dialyzer can provide remarkable 

convective clearance of medium- to high-molecular-weight 

solutes while avoiding significant albumin loss. 

In terms of the efficacy of middle molecule removal, 

online HDF can provide combined diffusive and convec-

tive transport, resulting in markedly enhanced clearance 

of middle to large molecules [27]. There are two major 

dilution techniques in HDF: pre- and postdilution. A re-

cent observational prospective study demonstrated that 

the MCO dialyzer produced a greater reduction in λFLC 

compared with predilution online HDF (43.2% vs. 33.0%, 

respectively) even with a high mean convection volume 

of 49.9 L/session of HDF [28]. Conversely, there have been 

conflicting reports of the efficacy of β2MG removal by the 

MCO dialyzer compared with postdilution HDF, regardless 

of convection volume [29–32]. Recently, a controlled cross-

over study showed that there was no significant difference 

in the RR for β2MG between the MCO dialyzer and a high 

convection volume of a mean 24.5 L/session postdilution 

HDF [33]. Consistent with previous studies [21,29,30,33], 

our results showed no significant differences in the RRs for 

β2MG after MCO dialysis or postdilution HDF. 

There have been few previous comparisons of the effica-

cy of FLC removal following MCO dialysis or postdilution 

HDF. Kirsch et al. [32] showed that the RRs of κFLC and 

λFLC were 72.9% and 48.1%, respectively, when using the 

MCO AA prototype dialyzer. These results were superior to 

the removal of λFLC, but not of κFLC, compared to post-

dilution HDF. Although the RRs of 69.2% and 49.8% for 

κFLC and λFLC, respectively, for MCO dialysis in our study 

were similar to previously reported results [29], the MCO 

dialyzer treatment resulted in a significantly greater RR for 

both κFLC and λFLC than postdilution HDF (κFLC, 47.8% 

and λFLC, 15.8%). Based on these results, MCO dialyzers 

may be a good therapeutic option for dialysis patients with 

elevated FLC concentrations, such as those with multiple 

myeloma or amyloidosis. 

Myoglobin-induced endothelial dysfunction is linked to 

oxidative stress, inflammation, and apoptosis [34,35]. In 

addition, excessive FLC can lead to apoptosis of proximal 

tubular epithelial cells and induce the activation of NF-κB 

[36,37]. Herein, we postulated that a low concentration of 

middle uremic toxins after MCO dialysis, including myo-

globin and FLC, could attenuate the apoptosis of endothe-

lial cells in vitro. To support our hypothesis, we assessed 

the expression of Bax, an apoptotic marker, and NF-κB 

proteins in human endothelial cells incubated with serum 

obtained after each dialysis modality. We found that the 

expression of these proteins was lower when the patient 

was treated with MCO dialyzed serum, which suggests that 

dialysis using MCO membranes could prevent uremic tox-

in-induced endothelial injury. This result is consistent with 

the findings of a previous study using ingenuity pathway 

analysis, which suggested that the serum metabolites and 

proteins after MCO dialysis have properties of increased 

proliferation and decreased apoptosis in endothelial cells 

compared to those after high-flux HD [38]. 

To the best of our knowledge, this is the first pre-post 

study assessing the RRs of middle molecules, including 

FLC, after treatment with a commercial MCO dialyzer, and 

comparing the results with those produced after treatment 

using high convection volume postdilution HDF. However, 
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this study had several limitations. First, the study duration 

was relatively short. Second, the sample size was small; 

however, this study was conducted with an adequate num-

ber of patients to meet the desired statistical power. Lastly, 

the enrolled patients were not randomly assigned to the 

MCO dialyzer or the HDF. 

In conclusion, this study showed that, compared with 

high-volume postdilution HDF, dialysis using the MCO di-

alyzer was superior in terms of the reduction of myoglobin, 

κFLC, and λFLC in Korean patients, whereas there were 

no differences in the removal of molecules below 12,000 

Da and serum albumin. Moreover, these results may be 

expected to have an anti-apoptotic effect on the human 

endothelium. Further long-term prospective studies with 

large sample sizes are needed to clarify the clinical impli-

cations of the substantial reduction of middle molecules 

using the MCO dialyzer. 
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