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Background 

The number of patients with end-stage renal disease is 

increasing, largely due to the aging of the population and 

increased incidence of hypertension and type 2 diabetes 

[1,2]. Several hemodynamic [3], inflammatory [4,5], and 

metabolic [6,7] factors are related to progressive loss of 

renal function and replacement of the renal parenchyma 

by fibrotic tissue. Recent studies have demonstrated that 

Kidneys are sensitive to disturbances in oxygen homeostasis. Hypoxia and activation of the hypoxia-inducible factor (HIF) pathway al-
ter the expression of genes involved in the metabolism of renal and immune cells, interfering with their functioning. Whether the tran-
scriptional activity of HIF protects the kidneys or participates in the pathogenesis of renal diseases is unclear. Several studies have in-
dicated that HIF signaling promotes fibrosis in experimental models of kidney disease. Other reports showed a protective effect of HIF 
activation on kidney inflammation and injury. In addition to the direct effect of HIF on the kidneys, experimental evidence indicates 
that HIF-mediated metabolic shift activates inflammatory cells, supporting the HIF cascade as a link between lung or gut damage and 
worsening of renal disease. Although hypoxia and HIF activation are present in several scenarios of renal diseases, further investiga-
tions are needed to clarify whether interfering with the HIF pathway is beneficial in different pathological contexts. 
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changes in the metabolism of podocytes and tubular cells 

and/or immune cells in kidneys are involved in the patho-

genesis and progression of kidney diseases [7–9]. 

Podocytes require a high energy supply to maintain their 

cellular functions [10]. Dysfunctions in energy metabolism 

may result in cell damage and glomerular diseases [9,11]. 

Dysregulation of podocyte mitochondrial dynamics and 

function is associated with development of focal segmental 

glomerulosclerosis (FSGS) [12]. After exposure to high glu-
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cose, podocytes show a significant increase in oxygen con-

sumption rate (OCR) and a higher OCR after addition of 

transforming growth factor beta (TGF-β), indicating promi-

nent changes in their energy metabolism by stimuli related 

to diabetic kidney disease, and such metabolic effects may 

sensitize the cells toward apoptosis [13]. Mitochondrial 

dysfunction also plays a role in the crosstalk among glo-

merular cells in renal diseases. Activation of TGF-β signal-

ing in podocytes induces endothelin-1 release, which pro-

motes mitochondrial dysfunction in adjacent endothelial 

cells and contributes to the development of glomerular 

lesions in experimental FSGS [14]. 

Glomerular lesions can extend to the tubulointerstitial 

area with the passage of protein and pro-inflammatory 

material to the neighboring interstitium and consequent 

inflammation and fibrosis [15]. However, interstitial fibro-

sis can start and become chronic in the absence of glomer-

ular lesions. This process involves the participation and 

interaction of several cell types, including fibroblasts and 

tubular epithelial cells [16,17]. Recent studies have shown 

that the fibrogenic process in the kidneys is also associat-

ed with alterations in the metabolism of tubular epithelial 

cells [18,19]. Inhibition of genes related to regulation of the 

oxidative metabolism of fatty acids in tubular epithelial 

cells results in ATP depletion, intracellular lipid deposition, 

cell death, and dedifferentiation, as are observed in renal 

fibrosis [18]. The “Warburg effect,” which is the cellular 

metabolic reprogramming that exchanges oxidative metab-

olism for activation of aerobic glycolysis [20], may also be 

involved in the damage to tubular epithelial cells in kidney 

diseases. However, whether such changes in energy metab-

olism occur in tubular epithelial cells and what metabolic 

pathways are altered in the process of renal fibrosis remain 

unclear. 

Kidney-resident immune cells participate in the initi-

ation and spread of kidney damage and respond to met-

abolic shifts by changing their phenotype and functions. 

Macrophages are plastic cells; their phenotype can polarize 

to pro-inflammatory or anti-inflammatory, which require 

different metabolic pathways. Pro-inflammatory macro-

phages (M1) rely mainly on glycolysis, whereas anti-in-

flammatory macrophages (M2) have high oxidative phos-

phorylation (OXPHOS) activity and fatty acid oxidation [7]. 

Under homeostatic conditions, kidney-resident immune 

cells exhibit OXPHOS as the predominant metabolic path-

way. Affected kidneys are infiltrated by pro-inflammatory 

cells, and predominance of glycolytic activity is observed 

[21]. 

The maintenance of renal cell energy homeostasis is 

under the control of a series of pathways and molecules in-

volved in modulation of cell metabolism, among which the 

hypoxia-inducible factor (HIF) pathway plays an important 

role [22]. 

Hypoxia-inducible factor: mechanism and 
function 

HIFs are oxygen-sensitive transcription factors that act in 

metabolic reprogramming to provide cell adaptation under 

hypoxic conditions [23]. HIF proteins consist of two sub-

units, α and β, that form a functional complex. The α sub-

unit is unstable, and three distinct HIF-α have been iden-

tified: HIF-1α, HIF-2α, and HIF-3α [24,25]. The β subunit 

is stable and always present in the protein complex. Once 

the functional complex is formed through dimerization of 

the two subunits, the complex translocates to the nucleus 

and activates target genes and cofactors [25]. Studies have 

shown that HIFs can regulate the expression of genes relat-

ed to iron regulation, glycolysis, cell survival, erythropoie-

sis, apoptosis, and angiogenesis [26,27]. 

HIF-1α and HIF-2α are differently distributed in organs 

and cells. Both contain a dimerization domain in the N-ter-

minus and a transactivation domain in the C-terminus and 

regulate common target genes such as facilitated glucose 

transporter 1 (GLUT1), vascular endothelial growth factor 

(VEGF), and adrenomedullin genes [25,28,29]. Both HIF-1α 

and HIF-2α regulate physiological and pathological angio-

genesis [30,31] and also regulate specific target genes. HIF-

1α is responsible for glycolytic and carbonic anhydrase-9 

gene regulation, while HIF-2α regulates TGF-α and cyclin 

D1 genes [32,33]. In addition, Elvert et al. [34] observed 

that expression of the VEGF receptor 2 gene is induced by 

HIF-2α but not by HIF-1α. Less is known about the role of 

HIF-3α; however, it has been shown to negatively regulate 

the expression of genes up-regulated by HIF-1α and HIF-2α 

[35]. 

HIF activity is regulated by proteasomal-mediated deg-

radation of the HIF-α subunit [36]. Under normoxic cir-

cumstances, prolyl hydroxylase domain (PHD) proteins 

hydroxylate HIF-α at prolyl residues. Once the HIF-α is hy-
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droxylated, the von Hippel–Lindau (VHL) protein E3 ubiq-

uitin ligase ubiquitinates HIF-α for subsequent degradation 

by the 26S proteasome system [25,37]. The role of PHDs is 

oxygen dependent; cellular PHD activity is mostly regulat-

ed by oxygen partial pressure, but it can also be modulated 

by reactive oxygen species (ROS), succinate, and nitric ox-

ide (NO) [38,39]. HIF-α can be also acetylated by the arrest 

defective 1 acetyltransferase, which enhances the interac-

tion between VHL and HIF-α and promotes its degradation 

[25]. Under hypoxic conditions, HIF-α is modulated by a 

small ubiquitin-like modifier (SUMO), which enhances the 

affinity between HIF-α and VHL and promotes PHD-in-

dependent degradation [40]. This occurs in the absence 

of a sentrin/SUMO-specific protease 1 (SENP1). In the 

presence of SENP1, HIF-α loses the SUMO modification in 

a process called deSUMOylation, preventing HIF-α deg-

radation. Once HIF-α is stable, HIF-α and HIF-β dimerize, 

producing a functional transcriptional complex capable of 

activating hypoxia-response element genes [25,40]. 

Kidney oxygenation, hypoxia, and hypoxia-
inducible factor 

Physiological kidney oxygenation involves a balance of O2 

demand and supply. Renal O2 consumption is mostly re-

lated to solute exchange in tubular cells and renal aerobic 

glycolysis. Most of the energy required for the kidneys is 

obtained through aerobic production of adenosine triphos-

phate (ATP). However, segments of the nephron present in 

the renal medulla can rely on anaerobic metabolism for en-

ergy production, since the vascular architecture promotes 

a physiologic hypoxic condition in the medullary area 

[25,41]. The parallel arrangement of peritubular capillaries 

located along the nephrons allows oxygen to diffuse from 

the descending branch of the vessel toward the ascending 

branch, which has lower oxygen tension. This countercur-

rent exchange of O2 decreases O2 availability in the medul-

la, even though the kidney receives a high amount of blood 

perfusion [42]. Due to these specific characteristics, the 

kidneys are extremely sensitive to stresses that cause hy-

poxia [43]. 

Many individual risk factors and environmental and 

behavioral causes might lead the kidneys to a pathologi-

cal state of hypoxia. Anemia, hypertension, air pollution, 

hyperglycemia, smoking, atherosclerosis, and acute kidney 

injuries (AKIs) are some of the factors that reduce oxygen 

delivery, promoting renal hypoxia [44]. Once activated by 

hypoxia, the renal HIF pathway can regulate the gene ex-

pression of VEGF, glucose transporters, erythropoietin, and 

endothelin 1, improving angiogenesis, energy metabolism, 

and erythropoiesis. Therefore, HIF is crucial for cellular 

adaptation to hypoxia by improving survival and tissue 

oxygenation and preventing damaging effects [45–47]. This 

adaptation involves increase of glycolysis and reduction of 

cellular oxygen consumption [48]. In hypoxic conditions, 

HIF upregulates the expression of pyruvate dehydrogenase 

kinase 1 (PDK1) [49], which inhibits the mitochondrial en-

zyme pyruvate dehydrogenase, repressing the production 

of acetyl-CoA from pyruvate and decreasing the mitochon-

drial oxygen consumption in the tricarboxylic acid cycle. 

Pyruvate is then redirected to the glycolytic pathway [48]. 

Thus, the HIF pathway promotes a metabolic shift from 

OXPHOS to glycolysis, decreasing the cellular necessity of 

oxygen to produce ATP. Moreover, this metabolic shift also 

protects the cells by reducing ROS formation [50]. Meta-

bolic reprogramming could lead to a cellular bioenergetic 

crisis once glycolysis produces less ATP than OXPHOS 

[48]. However, HIF activation leads to an increase in glu-

cose uptake through upregulation of glucose transporters 

GLUT1 and GLUT3 [48,51] and increases the expression of 

enzymes involved in the glycolytic pathway [50,51]. In ad-

dition, HIF downregulates the medium-chain acyl-CoA de-

hydrogenase and the long-chain acyl-CoA dehydrogenase 

enzymes [52] and inhibits carnitine palmitoyltransferase 

A 1 [53], decreasing the transport of fatty acid in the mito-

chondria membrane and fatty acid oxidation and further 

reducing cellular oxygen consumption [48]. When hypoxia 

is brief and transitory, this mechanism of defense is often 

effective. However, when hypoxia is prolonged, the defense 

can be insufficient and pathological cellular pathways are 

recruited, aggravating the hypoxia state and consuming 

more oxygen for their processes. 

The regulatory activity of HIF-1α and its transcriptional 

response vary in different renal cell types [54,55]. The en-

ergy metabolism of proximal tubular epithelial cells relies 

mostly on oxidative mitochondrial metabolism. Although 

the capacity for glycolysis is limited in proximal tubular 

cells, during oxygen deprivation, the transcriptional ac-

tivity of HIF-1α is activated and promotes the expression 

of enzymes involved in glycolytic anaerobic metabolism, 
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which can provide small amounts of ATP to renal cells [54]. 

In podocytes, hypoxia-induced HIF activation increases 

the expression of VEGF, which promotes vascular devel-

opment [56] and improves mitochondrial metabolism of 

other glomerular cells such as endothelial cells in a para-

crine manner [57]. Due to the key role of cell metabolism in 

the maintenance of cell viability and integrity, disturbance 

of oxygen homeostasis and HIF activity can impact the 

pathogenesis and/or progression of several pathological 

conditions, including kidney diseases [25,58]. 

Hypoxia-inducible factors in kidney diseases 

In addition to regulating cell metabolism in kidneys 

[25,59,60], HIF-1α plays a role in the process of renal injury 

in different conditions [61–63]. Several lines of evidence 

indicate that HIF-1α acts as a profibrotic effector in kidney 

diseases. Activation of HIF-1α in tubular epithelial cells by 

hypoxia was shown to promote epithelial-mesenchymal 

transition in vitro and was associated with tubulointerstitial 

lesion in mice that underwent unilateral ureteral obstruc-

tion (UUO) and patients with chronic kidney disease (CKD) 

[64]. Deletion of VHL in tubular cells resulted in HIF-1α 

stabilization in the renal cortex and increased fibrosis in 

mice that underwent 5/6 nephrectomy. Pharmacological 

blockade of HIF-1α with YC-1 [65] or deficiency of HIF-2α 

in renal interstitial cells [66] ameliorated renal interstitial 

fibrosis in UUO mice. Inhibition of renal HIF-1α by short 

hairpin RNA attenuated glomerular damage and tubuloint-

erstitial fibrosis induced by angiotensin II infusion [67] or 

chronic renal ischemia [62] in rats. Glomerular type I colla-

gen accumulation was reduced by HIF-1α knockout in the 

NEP25 model of FSGS [68]. Selective deletion of HIF-1α in 

proximal tubular epithelial cells ameliorated renal fibrosis 

in an aristolochic acid mouse model of kidney disease [69]. 

Another study showed that global stabilization of Hif-1α 

and Hif-2α through genetic inactivation of VHL attenuated 

the renal inflammatory status of UUO mice [70]. Pretreat-

ment with FG-4487, a PHD inhibitor, induced accumu-

lation of HIF-1α and HIF-2α in tubular cells and reduced 

kidney injury and apoptosis in rats with AKI induced by 

renal ischemia/reperfusion injury (IRI) [71]. In vitro, treat-

ment with enarodustat (a pan-PHD inhibitor) or small 

interfering RNA (siRNA) knockdown of PHD2 reduced 

the levels of ROS and increased the viability of renal prox-

imal tubule cells with ischemia by blockade of OXPHOS 

or oxygen-glucose deprivation. These protective effects 

of PHD inhibition were attributed to the HIF-1α–induced 

expression of enzymes involved in glycogen synthesis, with 

enhanced glycolysis and delayed ATP depletion [72]. In 

cisplatin-treated mice, pretreatment with roxadustat (FG-

4592), a novel PHD inhibitor, enhanced HIF-1α in tubular 

cells, improved renal function, and reduced markers of 

renal inflammation/injury [73]. Roxadustat reduced renal 

crystal deposition and ameliorated renal dysfunction and 

tubulointerstitial damage in a model of CKD by adenine 

overload [74]. However, roxadustat had no effect on re-

nal fibrosis or macrophage infiltration in UUO mice [75]. 

Oral administration of roxadustat corrected anemia and 

reduced serum hepcidin level, which was increased by in-

flammation [76], in dialysis and nondialysis patients with 

CKD [77–79]. Together, these findings suggest that the role 

of HIF in kidney damage can vary according to the patho-

logical context and the mechanism applied to modulate 

its activation. Furthermore, therapeutic approaches may 

interfere with the activation of HIF in cells other than renal 

cells, such as immune cells. 

Physiological hypoxia-inducible factor activity in 
immune cells 

Hypoxia plays a key role in the bone marrow, providing a 

specific niche for hematopoietic stem cells, maintaining 

the self-renewal capacity of these cells, and sustaining their 

survival [80]. Recent research has demonstrated the impor-

tance of HIF expression by immune system components 

in response to physiological hypoxia or inflammation. Evi-

dence shows that activation of HIFs in innate and adaptive 

immune cells plays a central context-specific manner role 

in controlling their functions and cell metabolism (Fig. 

1) [48]. In neutrophils, for example, HIF-1α expression is 

associated with a metabolic shift to a glycolytic profile, as-

sociated with increased phagocytic capacity and formation 

of neutrophil extracellular traps (NETs), in addition to pro-

moting survival [81]. Human and mouse neutrophils ex-

press HIF-2α, which is up-regulated by lipopolysaccharide 

(LPS). HIF-2α–depleted inflammatory neutrophils derived 

from murine bronchoalveolar lavage fluid from LPS-chal-

lenged mice expressed lower level of the antioxidant en-

zyme catalase than wild-type neutrophils and underwent 
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Figure 1. Hypoxia-inducible factors (HIFs) and immune cells. (A) HIFs regulate immune cells by interfering with their metabolic 
pathways and function/phenotype. In neutrophils, HIF-1α activation favors glycolysis, increasing the cellular phagocytic capacity, 
surveillance, and release of neutrophil extracellular traps (NET). In natural killer (NK) cells, HIF-1α is associated with the balance be-
tween antibacterial function and tissue repair. HIF-1α increases the migration capacity of both eosinophils and dendritic cells (DCs). 
In pro-inflammatory macrophage (M1), HIF-1α is fundamental for the activation of glycolysis and pentose phosphate pathways (PPP) 
and increases the phagocytic capacity and nitric oxide synthase 2 (NOS2) expression, while suppressing oxidative phosphorylation (OX-
PHOS). HIF-2α is associated with higher tissue repair capacity through arginase-1 expression and lower glycolysis in anti-inflammatory 
macrophage (M2), which rely on OXPHOS to meet their energy demands. (B) HIF pathways balance the expression of transcriptional 
factors and effector functions in adaptive immunity. HIF-1α downregulates forkhead box P3 (Foxp3) and upregulates the retinoid or-
phan receptor gamma t (RORγt) in CD4+ T cells, interfering with their immune functions. During Th1 differentiation, HIF-1α increases 
the expression of interferon gamma (IFN-γ). In CD8+ T cells, HIF is associated with increased release of granzyme B and perforin and 
enhanced glycolytic activity. In B cells, HIF induces glycolysis, antibody production, and proliferation and inhibits apoptosis.

increased apoptosis in response to nitrosative stress [82]. 

In dendritic cells, activation of HIF-1α has been associated 

with the capacity to migrate and to activate T cells [83]. 

Recently, HIF-1α expression was also observed in natural 

killer cells in the skin and was shown to play an important 

role in the balance between tissue repair and antibacterial 

defense [84]. Although its participation in metabolism has 

not been investigated, the expression of HIF-1α was associ-

ated with a greater migratory capacity in eosinophils [85]. 

In macrophages, activation of the glycolytic pathway 

through expression of HIF-1α is associated with a pro-in-

flammatory profile (M1), increasing the phagocytic capac-

ity and favoring the production of cytokines essential for 

clearance of viruses and bacteria [86,87]. Tannahill et al. 

[88] demonstrated that LPS-induced HIF-1α stabilization 

leads to a metabolic shift toward glycolysis and the pentose 

phosphate pathway (PPP) in macrophages by inducing the 

expression of genes essential for glycolysis, which results 

in accumulation of intermediates of the Krebs cycle such 

as fumarate, malate, and succinate. Increasing succinate in 

macrophages leads to inhibition of PHDs through gener-

ation of ROS by mitochondrial reverse electron transport 

from complex I or even by competition for the binding site 

of its cosubstrate, alpha-ketoglutarate [89,90]. This inhibi-

A B



tion finally results in accumulation of HIF-1α, which induc-

es a pro-inflammatory phenotype in macrophages, increas-

ing the production of inducible NO synthase, which drives 

NO synthesis [86,88,91]. Notably, suppression of HIF-2α in-

creases the levels of NO and efferocytosis in macrophages 

[91,92]. This demonstrates that the HIF-α isoforms regulate 

NO production and phagocytic capacity in macrophages in 

an antagonistic way (Fig. 1A). 

HIF-1α also participates in several processes essential 

for the development and functioning of T and B cells and 

generation of antibodies upon an antigenic challenge (Fig. 

1B) [93,94]. Cho et al. [93] demonstrated that HIF signaling 

increases the glycolytic metabolism of germinal center 

B cells, affecting their antibody production, proliferation 

capacity, and apoptosis. In line with this finding, another 

group observed that the deletion of VHL leads to a de-

crease in antigen-specific terminal center B cells, impairing 

the generation of high-affinity antibodies [94]. Activation 

and differentiation into subtypes of CD4 T cells and the 

cytotoxic capacity of CD8 T cells have also been associated 

with induction of the HIF-1α–dependent glycolytic path-

way [81]. HIF-1α promotes the differentiation of Th17 cells 

through transcriptional activation of the retinoid orphan 

receptor gamma t (RORγt), the main transcription factor of 

Th17 cells. HIF-1α binds to p300/RORγt, and this protein 

complex binds to the interleukin 17 (IL-17) promoter, en-

hancing IL-17 gene expression and contributing to Th17 

function [95]. In addition, signal transducer and activator 

of transcription 3 (STAT3), which is activated by IL-21, IL-

6, and IL-23, can physically interact with the promoter of 

HIF-1α and increase its expression [96,97]. Concomitantly, 

HIF-1α can direct the major transcriptional factor of regu-

latory T cells (Tregs), forkhead box P3 (Foxp3), to protea-

somal degradation [95]. Shehade et al. [98] showed that T 

cell differentiation under hypoxic conditions had a higher 

number of IL-17–producing cells, whereas the Foxp3+ Treg 

frequency was significantly decreased. In Th1 differentia-

tion, HIF-1α can act as an enhancer of the glycolytic path-

way and interferon gamma (IFN-γ) expression through 

retroactive activation of STAT3 [81,98]. The higher amount 

of HIF-1α in Th1 cells leads to an increase in lactate dehy-

drogenase A, which increases acetyl-CoA accumulation in 

the cells, promoting histone acetylation and transcription 

of IFN-γ [99]. HIF signaling is also important for CD8+ T cell 

function, promoting the expression of crucial transcrip-

tion, effector, and costimulatory-inhibitory molecules and 

favoring the clearance of viruses and tumors. Deletion of 

VHL and increase in HIF-1α and HIF-2α result in higher 

effector function in CD8+ T cells during chronic infection, 

culminating in hyperinflammation [100]. These examples 

demonstrate the complexity behind the roles of HIF-1α 

in different immune cells, which also depend on the sur-

rounding cellular environment. 

Considering that HIF can alter the metabolism of im-

mune cells, interfering with their inflammatory activity, it 

is conceivable that its activation acts as a regulatory link 

between events that impairs kidney function/cell metabo-

lism (e.g., hypoxia, LPS, ROS) and the inflammation that is 

established and progresses in kidney diseases.  

Role of hypoxia-inducible factor in immunity in 
acute kidney injury 

The pathophysiology of renal IRI is accompanied by in-

tense inflammation, and researchers have increasingly 

demonstrated a relationship between HIF-1α activation 

and immune cells during this process. Increased transcrip-

tional activity of HIF-1α in renal tubular cells has been 

closely associated with macrophage-dependent inflamma-

tion [101]. The nuclear factor kappa B (NF-κB) pathway is 

highlighted for its central role in promoting inflammation 

and is activated by inflammatory cytokines, leading to their 

retroactive production. Li et al. [101] demonstrated that 

NF-κB binds the HIF-1α promoter, leading to increased 

HIF-1α expression and consequent protection against tu-

bular injury during AKI. 

Using the cisplatin model of AKI and other models of 

acute and chronic hypoxic kidney injury, Yamaguchi et al. 

[102] found that the inflammation-related transcription 

factor CCAAT/enhancer binding protein δ (CEBPD) is a 

regulator of HIF-1 in the kidney, binding directly to the 

HIF-1α promoter and potentiating its transcription. In 

tubular epithelial cells, CEBPD was rapidly induced by in-

flammatory cytokines produced by macrophages, such as 

IL-1β, through NF-κB activation, which increases HIF-1α 

expression during hypoxia and is essential for non-hypoxic 

induction of HIF-1α. 

Folic acid, also known as vitamin B9, is necessary for 

one-carbon transfer reactions and nucleic acid synthesis; 

however, it causes toxicity and AKI when administered in 
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high doses [103]. Interestingly, pretreating human mono-

cyte THP-1 cells with folic acid decreased the nuclear ac-

cumulation of HIF-1α protein and reduced the expression 

of IL-1β and tumor necrosis factor alpha (TNF-α), while it 

increased the level of IL-10. In addition, KC7F2 (an HIF-

1α inhibitor) reduced the levels of these hypoxia-induced 

cytokines, whereas dimethyloxalylglycine (DMOG, a PHD 

inhibitor) induced their over-expression [104]. Gentamicin 

nephrotoxicity is also a common cause of drug-induced 

AKI. Dose-dependent elevation of renal HIF-1α messenger 

RNA level and increased tubulointerstitial infiltration of 

ED1+ macrophages have been reported in rats with genta-

micin-induced acute injury [105,106]. Treatment with co-

balt activates HIF-1α and reduces macrophage infiltration 

in kidneys exposed to gentamicin [106]. 

The AKI to CKD transition and development of fibrosis in 

mice treated with low-dose cisplatin was accompanied by 

a significant increase in the total macrophage population, 

with a higher amount of M2 macrophages expressing ar-

ginase 1 [107], which is induced by HIF-2α and suppresses 

NO production [91]. A recent study investigated the role of 

macrophages in response to repeated low doses of cispla-

tin-induced fibrosis using liposome-encapsulated clodro-

nate to deplete macrophages in mice. The authors showed 

that renal depletion of F4/80high and M2 macrophages with 

decrease in arginase 1 expression attenuates the develop-

ment of renal fibrosis, suggesting a pathogenic role for kid-

ney-resident M2 macrophages in the progression of fibrosis 

[108]. 

Chronic kidney disease-related complications and 
hypoxia-inducible factor activation 

After AKI, an adaptive repair process can restore the in-

tegrity of the renal tubules. In contrast, incomplete repair 

with undifferentiated and atrophic tubules and persistent 

inflammation can result in renal fibrosis and progression to 

CKD. 

Hypoxia is an early event in the development and pro-

gression of experimental diabetic kidney disease, in which 

inflammation and macrophage polarization play a key role 

[109]. TGF-β–activated kinase 1 (TAB1) binding protein 

and TGF-β–activated (TAK1) binding protein form a com-

plex (TAB1/TAK1) that can activate the NF-κB signaling 

pathway in bone marrow-derived macrophages, activating 

HIF-1α, increasing glycolytic metabolism, and promoting 

polarization of these cells toward the M1 pro-inflammatory 

phenotype [110]. In contrast, myeloid cell-specific activa-

tion of HIF suppressed inflammation in UUO mice, where-

as specific inactivation of HIF in these cells enhanced in-

flammation. Furthermore, prolonged exposure to hypoxia 

suppressed the expression of multiple inflammatory mol-

ecules in non-injured kidneys [70]. Thus, hypoxia and/or 

HIF activation in myeloid cells seem to attenuate the renal 

inflammation associated with UUO. Consistent with these 

findings, we observed that exposure to chronic hypoxia 

reduced renal infiltration by CD68+ macrophages and at-

tenuated renal oxidative stress, innate immunity activation, 

and injury in rats with 5/6 nephrectomy, while it did not 

promote renal injury or inflammation in sham-operated 

rats [111]. HIF-1 and HIF-2 exert different effects on mac-

rophage function in vitro; HIF-1 promotes polarization to 

the M1 phenotype, while HIF-2 activation induces the M2 

anti-inflammatory phenotype [70]. 

Immunoglobulin A nephropathy (IgAN) is one of the 

most common types of primary glomerulonephritis. Infil-

tration of CD68+ and CD206+ macrophages is increased in 

the kidneys of patients with IgAN [112,113], and the pres-

ence of CD68+ macrophages in the tubulointerstitial area 

was associated with increased renal activation of NF-κB 

[114], which binds the HIF-1α promoter and enhances its 

transcription [101]. Indeed, the expression of HIF-1α has 

been detected in biopsy material from patients with IgAN. 

Notably, higher HIF-1α expression was associated with 

lower serum creatinine level, low interstitial fibrosis score, 

and low glomerular sclerosis in early CKD. However, once 

fibrosis progresses in the later stages of CKD, lower HIF-

1α expression is detected [115]. Thus, renal expression of 

HIF-1α may be beneficial in early CKD, when active tissue 

damage is ongoing. 

Cardiovascular complications are the leading cause of 

death in CKD patients [109]. While HIF-1α induces expres-

sion of VEGF, endothelin-1, and matrix metalloproteinases 

in endothelial cells to facilitate angiogenesis, it induces the 

proliferation of vascular smooth muscle cells in atheroma 

by upregulation of CD98 and macrophage migration inhib-

itory factor. HIF-1α also modulates the function of macro-

phages derived from diseased foam cells, making the cells 

more inflammatory and apoptotic [116]. Notably, activa-

tion of HIF in immune cells plays different roles in different 
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contexts of CKD, especially in macrophages, promoting 

chronic inflammation or slowing disease progression. The 

HIF-mediated inflammatory response resulting from CKD 

directly affects the kidneys but can reach the circulation 

and affect other organs. 

Lung-kidney crosstalk in diseases: a role for 
hypoxia-inducible factor? 

Lungs and kidneys are related in structure and function. 

Both organs contain an epithelial barrier that regulates the 

amounts of fluid and solutes that move across two distinct 

compartments [117–119]. Evidence indicates a close re-

lationship between kidneys and lungs in several diseases 

[120,121]. Damaged kidneys can interfere with pulmonary 

disorders by altering the acid-base or fluid balance or 

through the production of inflammatory mediators [119]. 

Lungs are highly susceptible to circulating mediators such 

as TNF-α, IL-1, IL-6, IL-8, NO, and caspase-3 due to their 

extensive capillary network [118]. 

Although the lungs are among the most oxygenated or-

gans in the human body [122], HIFs appear to play a critical 

role in lung function [123]. HIF-1α is involved in lung vas-

cular development via upregulation of angiogenic factors 

[124,125]. HIF-2α participates in the formation of alveoli 

and production of surfactant [126]. HIF-3α knockout mice 

showed impaired lung remodeling at the late embryonic 

stage and right ventricular enlargement in the adult stage 

[127]. 

HIFs also play an important role in pulmonary diseas-

es [128,129]. Acute lung injury (ALI) is an inflammatory 

disease characterized by pulmonary edema attributed to 

increased permeability in endothelial cells and infiltration 

of protein-rich fluid into the alveoli, which reduces the 

efficacy of air exchange and can result in hypoxemia and 

alveolar hypoxia. Sepsis, renal IRI, severe traumatic injury, 

and cigarette smoking are some of the major risk factors for 

ALI. Although there is no evidence that hypoxia is a direct 

cause of ALI, studies suggest that hypoxia can contribute to 

the pathogenesis of the disease [129]. Experimental acute 

exposure to hypoxia resulted in an ALI-like scenario in rats, 

with increased infiltration of immune cells and vascular 

leakage in lungs, suggesting that lung injury is perpetuated 

by alveolar hypoxia [130,131]. Indeed, alveolar hypoxia in 

ALI can trigger an inflammatory response with immune 

cell infiltration, especially macrophages, and increased 

production of inflammatory molecules, such as intercellu-

lar adhesion molecule-1, TNF-α, macrophage inflamma-

tory protein-1β, and monocyte chemoattractant protein-1 

(MCP-1), aggravating the injury to the lungs [122,131]. 

Furthermore, the lungs are among the organs that express 

the highest levels of HIF-2α in hypoxia [132], and this HIF-

2α upregulation increases the activation of nuclear factor 

of activated T cells c2 and the proliferation of pulmonary 

fibroblasts [133]. In contrast, other studies have reported 

that hyperoxygenation increased mortality in experimental 

models of ALI, whereas hypoxia reduced inflammation in 

the lungs [134]. Augmentation of HIF-1α downregulated 

the expression of toll-like receptor 4 and TNF-α in macro-

phages and decreased inflammatory impairment in ALI 

rats [135]. In cultured pulmonary alveolar type II cells, 

TNF-α induced the upregulation of HIF-1α and inhibited 

vasodilator-stimulated phosphoprotein expression, which 

plays an important role in the impairment of the alveo-

lar-capillary barrier in ALI [136]. 

HIF-1α also plays a metabolic role in ALI. Administration 

of DMOG protected alveolar epithelial cells from neu-

trophil-LPS–induced ATP decline and cell death in vitro, 

whereas knockdown of HIF-1α with siRNA or inhibition of 

glycolysis using media containing 2-deoxy-D-glucose abol-

ished the protective effect of DMOG, suggesting that HIF-

1α activation protects alveolar epithelial cells in ALI by en-

hancing their glycolytic activity. In addition, treatment with 

DMOG protected the alveolar epithelial barrier, improved 

arterial oxygenation, and prevented lung ATP decline in 

mice with LPS-induced lung injury [137]. Woods et al. [138] 

demonstrated that tissue-resident alveolar macrophages 

can adapt to hypoxia through HIF-1α activation in ALI. 

Hypoxia or treatment with FG-4592 stabilized HIF-1α in 

resident alveolar macrophages, increasing their glycolytic 

function and survival, and ameliorated lung injury in mice, 

suggesting that therapies inducing HIF-1α in macrophages 

may be beneficial in ALI [138]. Repeated injuries in the pul-

monary epithelium can cause abnormal wound healing, 

with recruitment of immune cells and activation of fibro-

blasts for extracellular matrix protein production, such as 

fibronectin and collagen, and result in pulmonary remod-

eling/fibrosis, which hinders air exchange and leads to sys-

temic hypoxemia [128]. Inhibition of the HIF-1α/PDK1 axis 

in lung fibroblasts attenuated bleomycin-induced pulmo-
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nary fibrosis in mice [139]. Activation of HIF-1α by hypoxia 

polarized activated macrophages to a fibrotic phenotype 

through increasing adenosine A2B receptor expression and 

production of profibrotic mediators [120]. These findings 

suggest an important role of HIF-1α as an amplifier of pul-

monary fibrosis. 

Patients with chronic obstructive pulmonary disease 

(COPD) present long-term respiratory symptoms and 

airflow limitation caused by remodeling of lung structure, 

leading to hypoxic conditions. HIF-1α has been implicated 

in the increase of deoxycytidine kinase, which is responsi-

ble for accumulation of deoxyATP and apoptosis in COPD 

[140]. HIF-1α also promotes mucus hypersecretion in 

COPD by increasing the expression of mucin 5AC, a major 

component of airway mucus, in airway epithelial cells [141]. 

CKD has been shown to affect the long-term survival of 

COPD patients [142]. Gjerde et al. [143] reported that sys-

temic inflammatory markers are associated with a higher 

risk of renal failure in COPD patients. 

Patients with AKI are twice as susceptible to respiratory 

failure as those without AKI and can progress to ALI [144]. 

Mice who underwent ALI after induction of AKI had in-

creased lung neutrophilia in bronchoalveolar lavage fluid 

and elevated MCP-1 levels in kidneys, serum, and lungs 

compared with ALI mice without AKI [145]. Moreover, after 

kidney ischemia, lungs present an inflammatory profile, 

with increased concentrations of pro-inflammatory cyto-

kines and chemokines, upregulation of caspase-dependent 

apoptosis, and increased macrophage-mediated pulmo-

nary vascular permeability [146]. Pulmonary stabilization 

of HIF-1α had a protective effect in mice exposed to LPS by 

inducing the expression of the antioxidant enzyme heme 

oxygenase-1 (HO-1) [147]. Notably, hemin-induced HO-1 

production reduces the systemic inflammation and im-

proves the renal outcomes after IRI. In addition, treatment 

with hemin ameliorated lung inflammation in AKI mice 

[148]. These findings suggest the existence of lung-kid-

ney crosstalk in different pathological scenarios and that 

HIF-induced antioxidant enzymes as well as HIF-1α target 

genes play a role in this process (Fig. 2). 

The gut-kidney axis: a role for hypoxia-inducible 
factor? 

Oxygen concentrations along the intestinal tract and large 

intestine are lower than those in other organs such as the 

lung, liver, and heart [149]. The partial pressure of oxygen 

level is low in the gut due to the anatomical juxtaposition 

of the outermost mucosal surface with the oxygen-deplet-

ed lumen and a countercurrent oxygen exchange system 

in the intestinal villi [149,150]. In addition, the gut contains 

a diverse and dense microbial population that includes 

aerobic facultative and anaerobic bacteria necessary for 

breakdown of food nutrients and regulation of intestinal 

and systemic immune responses [151,152]. 

HIFs are crucial for O2 regulation in the gut. In hypoxic 

conditions, HIFs promote the expression of factors respon-

sible for adaptation of the gut to hypoxia, such as genes 

involved in erythropoiesis, angiogenesis, and metabolism 

[39]. In addition to the protective barrier in the gut com-

posed of mucus, intercellular tight junctions, and adherens 

junctions in the external (luminal) and internal (vascular) 

compartments, HIF-1α was also shown to participate in 

protection of the intestinal epithelia during intestinal hy-

poxia [153,154]. Moreover, HIF-1α and HIF-2α have been 

shown to modulate intestinal epithelial barrier integrity, 

function, and homeostasis in colitis [155,156]. 

HIFs play critical roles in inflammatory response in the 

intestinal tissue. Acute intestinal inflammation involves the 

accumulation of neutrophils and can progress to chronic 

inflammation. Recruitment of neutrophils reduces O2 lev-

el in the environment sufficiently to activate HIF-1 in the 

gut of acute colitis model mice [157]. Intestinal tissue from 

patients with active ulcerative colitis showed increased 

positive staining for HIF-1α, whereas tissue from patients 

with Crohn disease showed intense expression of HIF-2α 

[158]. HIF-1α and HIF-2α were shown to upregulate the 

expression of creatine kinases in intestinal epithelial cells, 

which promotes rapid ATP generation via the phosphocre-

atine-creatine kinase system, improving cellular bioener-

getics and reducing the damage to the intestinal epithelium 

in colitis [156]. Inhibition of PHD with FG-4497 resulted 

in stabilization of HIF-1α and reduction of intestinal in-

flammation in murine colitis [159]. Deficiency of PHD1 

ameliorated colitis in mice by reducing apoptosis in the 

inflamed colon and enhancing epithelial barrier function 

[160]. Wild-type mice treated with AKB-4924 (a PHD in-

hibitor) showed reduced serum levels of endotoxin, IL-1β, 

IL-6, and TNF-α and preservation of the intestinal barrier 

during colitis, whereas mice with epithelial-specific HIF-1α 



Figure 2. Hypoxia-inducible factors (HIFs) in the lung-kidney and gut-kidney axes. Increased systemic inflammation is associated 
with a higher risk of renal failure in patients with chronic obstructive pulmonary disease. Presence of kidney disease increases neutro-
philia in bronchoalveolar lavage fluid and the levels of monocyte chemoattractant protein-1 (MCP-1), cytokines, and apoptosis in the 
lungs. HIF activation induces the expression of the antioxidant enzyme heme oxygenase 1, which can reduce the injury to the damaged 
lungs and kidneys. Renal damage also results in accumulation of uremic toxins, which promote intestinal dysbiosis and inflammation. 
Gut dysbiosis and lesions on the intestinal epithelium increase the passage of inflammatory molecules from the gut to circulation, 
reaching the kidneys, where they promote inflammation and dysfunction. A balanced gut microbiota produces short-chain fatty acids 
(SCFAs), which are increased by HIF activation and exert positive effects on the intestinal mucosa and immunity and reduce kidney 
inflammation. Therefore, kidneys, gut, and lungs receive a large blood supply, resulting in high exposure to circulating immune cells 
and molecules. HIFs can interfere with cell metabolism and the expression of cytokines by immune and epithelial cells, increasing the 
possibility that HIFs play a role in the lung-kidney and gut-kidney axes. However, it remains unclear whether HIF activation is beneficial 
or acts as a link between the diseases.
GFR, glomerular filtration rate.

deficiency had no protection against colitis in the presence 

of AKB-4924 treatment, suggesting that HIF-1α is essential 

for the modulation of gut inflammatory diseases [161]. 

The roles of the gut microbiota in the healthy gut and 

in intestinal diseases have been extensively investigated. 

A regulated host-microbiota interaction is essential for 

physiologic homeostasis and regulation of the immune 

system [151,162]. Dysbiosis is the imbalance of the gut 

microbiota with changes in the host metabolic capacity 

and inflammatory responses that can result in damage to 

different organs. Lifestyle and environmental factors, use 

of antibiotics, and a diet poor in fibers and high in sugar 

and fat are associated with dysbiosis [151,163]. Alterations 

in the gut microbiota composition with a predominance of 

pathogenic bacteria lead to the synthesis of harmful mol-

ecules that damage the gut and are released to the circula-

tion [151,164,165]. Dysbiosis and lesions on the intestinal 

epithelium also increase the passage of bacteria and other 

inflammatory players from the gut to the circulation and 

therefore to other extraintestinal sites such as the kidneys, 
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where they promote inflammation (Fig. 2). Loss of renal 

function results in accumulation of uremic toxins, which 

promotes gut dysbiosis. This gut-kidney crosstalk also 

involves immune cells and cytokines that are regulated 

by bacterial metabolites [151]. A balanced gut microbiota 

produces short-chain fatty acids (SCFAs) such as acetate, 

butyrate, and propionate through anaerobic fermentation 

of dietary fibers or through metabolism of amino acids 

[166]. SCFAs play an important role in intestinal homeosta-

sis and exert positive effects on the intestinal mucosa and 

immune response as well as reduce kidney inflammation 

[151,166]. Butyrate is one of the main SCFAs that act in gut 

homeostasis [166]. In the healthy gut, butyrate concentra-

tion can exceed 30 mM and is a significant energy source 

for colonic epithelial cell metabolism. Thus, changes in mi-

crobiota can result in abnormal colonocyte function [167]. 

In colonocytes, absorbed butyrate can be converted to ace-

tyl-CoA through β-oxidation in mitochondria, contributing 

to the consumption of oxygen and activation of HIF-1α 

and transcription of its target genes [168]. Zhou et al. [169] 

demonstrated that intestinal epithelial-specific deletion 

of HIF-1α changed the composition of the gut microbiota 

and decreased butyrate production, increasing the suscep-

tibility of mice to induced colitis. In addition, butyrate can 

upregulate the expression of tight junction proteins in the 

intestinal epithelium in an HIF-1α–induced manner, which 

reduces intestinal inflammation and protects the barrier 

function of the gastrointestinal tract [170,171]. Germ-free 

and antibiotic-treated mice had reduced colonic butyrate 

content and weaker HIF activation, both of which were re-

stored by butyrate supplementation [172]. Koury et al. [173] 

showed that the prolonged increase in HIF-1α after experi-

mental gut IRI is mediated by contact of bacterial products 

within the gut lumen with the stressed intestinal mucosa. 

These findings suggest a role of the HIF-1α pathway on the 

protective effect of SCFAs produced by the gut microbiota 

in intestinal inflammatory diseases. 

Evidence indicates that SCFAs produced by the intes-

tinal microbiota also exert a renoprotective effect in AKI. 

Acetate, propionate, and butyrate improved renal function 

and reduced inflammation in experimental IRI-induced 

AKI mice. Furthermore, treatment with SCFAs reduced 

activation of NF-κB signaling, production of ROS, and 

translocation of HIF-1α to the nucleus in tubular epithelial 

cells stimulated with an inflammatory cocktail [174]. Gut 

dysbiosis and the consequent release of pro-inflammatory 

cytokines and chemokines by the intestinal epithelium are 

also involved in the pathogenesis and progression of CKD 

[162,164,175,176]. This raises the possibility that therapeu-

tic interventions aimed at interfering with renal HIF-1α in 

kidney diseases also interfere with intestinal HIF activation 

and microbiota. Kidneys and gut receive a large blood 

supply, increasing their exposure to HIF-related molecules 

released by other damaged organs into the bloodstream. 

Conclusions 

The role of hypoxia and HIF in kidney diseases has become 

a topic of interest to nephrologists. However, whether HIF 

activation is beneficial or participates in the pathogenesis 

and progression of kidney diseases remains unclear. HIF-1α 

stabilization has been shown to promote epithelial-mesen-

chymal transition in vitro and act as a profibrotic effector in 

experimental CKD. In contrast, other studies have reported 

that HIF-1α activation ameliorates renal inflammation, 

apoptosis, and injury. HIF also regulates the metabolism 

of immune cells and can modulate immune responses in 

kidney diseases. Furthermore, evidence suggests HIF-1α 

activation as a mechanism linking lung and gut damage 

to worsening kidney disease. Further studies on the role 

of HIF in the kidney-lung crosstalk and in the kidney-gut 

axis are needed. Current research supports HIF-1α and its 

transcriptional activity as important therapeutic targets to 

prevent human kidney diseases. However, variations in the 

HIF response to different pathological context need to be 

considered when targeting the HIF pathway. 
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