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Introduction 

The glomerular capillary wall acts as a filtration barrier and 

exhibits selective permeability. The barrier comprises an 

inner layer of glomerular endothelial cells (GECs), a glo-
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The glomerular filtration barrier (GFB), composed of endothelial cells, glomerular basement membrane, and podocytes, is a unique 
structure for filtering blood while detaining plasma proteins according to size and charge selectivity. Structurally, the fenestrated en-
dothelial cells, which align the capillary loops, are in close proximity to mesangial cells. Podocytes are connected by specialized inter-
cellular junctions known as slit diaphragms and are separated from the endothelial compartment by the glomerular basement mem-
brane. Podocyte-endothelial cell communication or crosstalk is required for the development and maintenance of an efficient filtration 
process in physiological conditions. In pathological situations, communication also has an essential role in promoting or delaying dis-
ease progression. Podocytes and endothelial cells can secrete signaling molecules, which act as crosstalk effectors and, through 
binding to their target receptors, can trigger bidirectional paracrine or autocrine signal transduction. Moreover, the emerging evidence 
of extracellular vesicles derived from various cell types engaging in cell communication has also been reported. In this review, we 
summarize the principal pathways involved in the development and maintenance of the GFB and the progression of kidney disease, 
particularly in kidney transplantation. 
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merular basement membrane (GBM), and an exterior layer 

of visceral epithelial cells named podocytes. GECs, facing 

the capillary lumen, are very flat cells with numerous fen-

estrations that facilitate and regulate the functions of filtra-

tion [1]. Podocytes, facing the urinary space, are terminally 
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differentiated cells characterized by their large cell bodies, 

long major processes, and smaller foot processes. The foot 

processes derived from adjacent podocytes interdigitate 

with each other, forming a slit diaphragm to cover the cap-

illaries. Between the GEC and podocyte layers, there is a 

condensed network of extracellular matrix (ECM) called 

GBM, which is composed preeminently of two heterotri-

meric proteins, type IV collagen and laminin, as well as 

sulfated proteoglycans [2]. 

Since the high selectivity of the glomerular filter is 

achieved by the collaboration between each component 

of the glomerular filtration barrier (GFB), the podocytes 

and GECs crosstalk is essential not only for the develop-

ment and maintenance of an efficient filtration process in 

physiological conditions but also has a fundamental role in 

promoting or delaying disease progression. In the glomer-

ular microenvironment, abnormality or health of one cell 

type can influent the nearby cells by signaling molecules 

and extracellular vesicles (EVs). Secreted growth factors 

and signaling peptides, which may have an autocrine effect 

on the same cell type or a paracrine effect on nearby cells, 

serve as crosstalk effector molecules by binding to their 

specific receptors and activating signaling [3]. The ECM is 

crucial for depositing secreted ligands, the development 

of concentration gradient, and the presentation of ligands 

to cell surface receptors [4]. In addition to growth factors 

and signaling peptides, there is growing evidence implying 

an important role for EVs in cell communication [5]. This 

review will focus on recent data concerning the crosstalk 

between GECs and podocytes in physiological and patho-

logical conditions. In particular, we will focus on the role of 

vascular endothelial growth factor A (VEGF-A), angiopoi

etins (ANGPTs), CXCL12/CXCR4/CXCR7, endothelin-1 

(ET-1), interleukin-6 (IL-6), and EVs. 

Vascular endothelial growth factor A signaling 

Vascular endothelial growth factor A signaling in renal 
diseases 

VEGF-A is a key factor for angiogenesis in multiple organ 

systems, including the formation and maintenance of the 

microvascular beds of the kidney. In Fig. 1, the role of VEGF 

on glomerular development is presented. 

Podocytes begin to express all VEGF-A isoforms at the 

S-shaped stage of glomerular formation. During the cap-

illary loop stage, premature podocytes express VEGF-A, 

encouraging the migration of VEGF receptor 2 (VEGFR-2) 

positive endothelial cell (EC) precursors in the renal mes-

enchyme. ECs move into the vascular cleft, proliferate, 

and differentiate in close proximity to the podocytes that 

produce VEGF-A [6]. Research in mice has demonstrated 

that decreased VEGF-A signaling from podocytes causes a 

loss of ECs’ migration and proliferation, which eliminates 

the GFBs’ functionality and reduces mice survival [7]. In 

the mature glomerulus, renal thrombotic microangiopathy 

(TMA) is caused by postnatal podocyte-specific VEGF-A 

deletion in mice and VEGF-A inhibition in humans, high-

lighting the significance of a sufficient level of VEGF-A 

within the mature kidney for maintaining the normal func-

tion of renal microvasculature [8]. 

Beyond the VEGF-A signaling to the glomerular endo-

thelium, there is also an autocrine pathway involving the 

soluble form of VEGFR-1 (sFlt1) released by podocytes. 

Through binding to glycosphingolipids in lipid rafts, sFlt1 

initiates an intracellular signaling cascade, facilitating actin 

reorganization and cell adhesion. Interestingly, severe pro-

teinuria and renal failure are caused by the deletion of sFlt1 

from podocytes [9]. 

Numerous kidney diseases involve VEGF signaling. 

According to recent animal research and clinical obser-

vations, endothelial dysfunction in preeclampsia may be 

brought on by the placenta’s excessive release of sFlt1 into 

the mother’s bloodstream. In this contest, VEGF-A might 

be trapped by sFlt1, leading to the reduction of free VEGF-A 

in circulation. Rats receiving an adenovirus expressing 

sFlt1 developed proteinuria, glomerular endotheliosis, and 

hypertension [10]. Podocyte-specific VEGF-A haploinsuf-

ficiency in mice causes proteinuria, endotheliosis, and, 

finally, the loss of ECs, similar to the characteristic renal 

lesions found in preeclampsia [11]. In humans, sFlt1 levels 

begin to rise at least 5 weeks before the onset of preeclamp-

sia and remain elevated [12]. The finding that therapy with 

neutralizing VEGF-A antibodies can be associated with 

glomerular endothelial damage, endotheliosis, and pro-

teinuria further supports this correlation [13]. 

The kidney and brain are especially affected by TMAs, 

a group of related illnesses in which the development of 

intracapillary and intra-arteriolar platelet thrombi results 

in end-organ ischemia and infarction. Hemolytic uremic 
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Figure 1. The role of vascular endothelial growth factor (VEGF) on glomerular development. (A) At the S-shaped stage, podocyte 
progenitor cells start to produce VEGF-A, which draws the VEGF-A receptor (VEGF-Ar) expressing endothelial cells (ECs) to migrate. ECs, 
in turn, produce platelet-derived growth factor (PDGF)-B, which attracts mesangial cells (MCs), through binding with the PDGF-A recep-
tor (PDGF-Ar). (B) The ECs start forming precursors of the capillary lumen; meanwhile, mesangial progenitor cells begin to envelop pri-
mordial ECs. The process of glomerular capillary lumen formation continues through EC apoptosis. (C) The MCs attach to the ECs and 
result in the formation of capillary loops. (D) Mature glomerulus.

syndrome (HUS), a kind of TMAs, is characterized by the 

formation of fibrin-platelet thrombi and damage to the 

ECs, including ballooning, detachment, and endotheliosis. 

It is essential to highlight that individuals taking anti-VEGF 

drugs for cancer may experience kidney histology abnor-

malities that resemble TMAs [13].  

Furthermore, it appears that VEGF has a role in develop-

ing diabetic nephropathy (DN). The glomerulus displays 

higher VEGF-A levels in the early angiogenic stage of DN. 

Experimental models of early diabetes have revealed glo-

merular overexpression of VEGF-A and its receptors [14], 

and markers of DN can be attenuated by blocking VEGF-A 

in rodents [15]. Moreover, transgenic overexpression of 

VEGF-A in podocytes causes the GBM to be thickened, pro-

teinuria, and DN hallmarks [16]. As mentioned before, the 

sFlt1 acts as an antagonist of VEGF-A through sequestering 

circulating VEGF-A. In experimental diabetes, inducible 

overexpression of sFlt1 in podocytes of mice results in a re-

duction of albuminuria and amelioration of glomerular al-

terations [17]. In contrast to these findings, it has also been 

observed that the specific deletion of podocyte-VEGF-A 

accelerates renal damage in an experimental model of dia-

betes [18] and a decrease of VEGF-A expression in human 

diabetes [19]. These findings revealed that, depending on 
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the signal intensity, there might be a delicate balance be-

tween the protective and harmful effects of VEGF-A. 

VEGF signaling is probably involved also in crescentic 

glomerulonephritis (CGN) and membranoproliferative 

glomerulonephritis (MPGN). High serum and urine levels 

of VEGF are reported in patients with CGN [20]. In human 

MPGN, VEGFR-1, VEGFR-2, and neuropilin-1 are ex-

pressed in mesangial cells (MCs), and VEGF-A can induce 

MC proliferation [21]. 

Vascular endothelial growth factor A signaling in kidney 
transplantation 

Particularly interesting is the potential role of VEGF in 

kidney transplantation. Earlier investigations showed that 

human chronic allograft nephropathy (CAN) and experi-

mental models both exhibit elevated expression of VEGF in 

the interstitial cell [22]. According to Malmström et al. [23], 

the chronic allograft damage index (CADI) score was cor-

related with the total intragraft as well as interstitial inflam-

matory cell expressions of VEGF and VEGFR-1. PTK787’s 

inhibition of the VEGF receptor significantly reduced both 

the CADI score and fibrosis. This finding suggested that 

elevated VEGF activity may facilitate alloimmune-induced 

inflammatory responses, ultimately resulting in fibrotic 

changes [23]. Moreover, VEGF may accelerate allograft vas-

culopathy by enhancing smooth muscle cell (SMC) migra-

tion either directly or by increasing the production of plate-

let-derived growth factor (PDGF) by surrounding cells [24]. 

In addition to its direct atherogenic effects, VEGF is crucial 

in controlling the mobilization, homing, and differentiation 

of vascular progenitor cells. Circulating VEGFR-2 positive 

progenitor cells transform into ECs or SMC when stimu-

lated with VEGF or PDGF-BB, respectively, which could 

hasten the onset of allograft atherosclerosis [25]. It seems 

that the effects of VEGF on renal allografts are time-depen-

dent. A study from Ozdemir et al. [26] demonstrated that 

in the short term after kidney transplantation, both tubular 

and interstitial VEGF expression acts as a protective signal 

on renal allografts. However, over the long term, interstitial 

fibrosis (IF) and, consequently, poor graft outcomes would 

be more likely in patients with marked tubular and intersti-

tial VEGF expression [26]. 

Endothelin-1 signaling 

Endothelin-1 signaling in renal diseases 

The human kidney expresses all three ET family members, 

ET-1, ET-2, and ET-3, albeit ET-1 is the most common iso-

form [27]. ETA receptors (ETAR) and ETB receptors (ETBR) 

are two G-protein-coupled receptors that ET-1, ET-2, and 

ET-3 bind to, whereas ET-3 has a low affinity for the ETAR 

at physiological concentrations [28]. In the vasculature, 

ETAR predominantly mediates vasoconstriction and mito-

genesis, whereas ETBR mainly mediates vasodilation and 

inhibition of growth and inflammation. 

The human kidney expresses a high density of ETBR 

[29]. By engaging in ETBR, ET-1 releases vasodilators in 

an autocrine or paracrine manner. Moreover, the kidney, 

liver, and lung endothelial ETBR play a critical role in 

scavenging ET-1 from the plasma [30]. The activation of 

ETBR in medullary epithelial cells, which lowers salt and 

water reabsorption, is the third important role of ET-1 [31]. 

ETAR and ETBR are also present in human and rat podo-

cytes and MCs [32]. ET signaling in podocytes is involved 

in different renal diseases, such as DN [33], proliferative 

lupus nephritis (LN) [34], and focal segmental glomerular 

sclerosis (FSGS) [35]. Lenoir et al. [33] showed that in mice 

with podocyte-specific double deletion of the alleles of 

ETAR and ETBR, diabetes-induced glomerulosclerosis and 

podocyte loss are avoided. Additionally, they discovered 

that ET-1 could directly activate the nuclear factor kappa B 

and β-catenin pathways in podocytes, which promotes the 

development of diabetic glomerulosclerosis and the loss of 

podocytes [33]. 

Results from the histological examination of LN samples 

pointed to a correlation between the width of the foot pro-

cess and the pathological score of GEC damage. More ET-1 

was secreted when GECs were exposed to a podocyte-con-

ditioned medium stimulated with immunoglobulin G (IgG) 

from LN patients (PCM-LN). A redistribution of cytoskel-

eton F-actin and a marked decrease in nephrin was noted 

when podocytes were exposed to an endothelial-condi-

tioned medium stimulated with PCM-LN (ECM-PCM-LN). 

It should be emphasized that the anti-ETAR antibody could 

block these effects, demonstrating that GECs and podo-

cytes communicate among themselves through ET signal-

ing [34]. 
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Moreover, ET-1 plays a role in FSGS, frequently accom-

panied by proteinuria and a steady decline in glomerular 

function. Podocyte damage, podocyte depletion, and glo-

merular capillary segment collapse are symptoms of FSGS. 

Studies performed by Daehn et al. [35] and Ebefors et al. 

[36] demonstrated that in transgenic mice and BALB/c 

mice with adriamycin-induced glomerulosclerosis, podo-

cyte-specific activation of transforming growth factor-beta 

(TGF-β) can cause ET-1 release by podocytes and enhance 

ETAR expression in nearby ECs. The paracrine ETAR acti-

vation by ET-1 led to degradation of the glomerular endo-

thelial surface layer, mitochondrial oxidative stress, and 

dysfunction of GECs. ETAR antagonism prevented all of 

these consequences. Albuminuria, glomerulosclerosis, and 

podocyte apoptosis were, in turn, promoted by endothelial 

dysfunction [35,36]. 

Endothelin-1 signaling in kidney transplantation 

Ischemia-reperfusion injury (IRI) and acute and chronic 

rejection after kidney transplantation can all trigger the 

innate and adaptive immune response. ET-l synthesis in 

vitro is impacted by a variety of cytokines that are released 

by infiltrating activated mononuclear cells. Tumor necro-

sis factor-alpha (TNF-α) can increase the ET-1 messenger 

RNA (mRNA) and ET-l protein release in rat MCs [37]. In 

bovine ECs, interferon-gamma cotreatment potentiates 

the TNF-α effect by boosting ET-1 synthesis [38]. TGF-β can 

stimulate ET-l secretion in cultured MCs [39], endothelial 

[40], glomerular epithelial [41], as well as tubular epithelial 

cells (TECs) [42]. These results suggest that different cyto-

kines and growth factors can regulate ET expression in the 

allograft during the immunological response to alloantigen 

stimuli. Also, it was discovered that upregulation of ET-1 

and its receptors in experimental and human kidney trans-

plantation. Recent research has shown that chronic renal 

allograft rejection in rats results in a considerable overex-

pression of ET-1, ET-3, and their receptors. Moreover, in 

these renal allografts, inhibiting ETs reduced chronic re-

jection, suggesting a potential role for ETs in the pathogen-

esis of CAN [43]. CAN is associated with a higher level of 

ET-1 in human kidney transplantation [44]. Medial SMCs 

and SMCs within the neointima both displayed elevated 

expression of ETAR in intrarenal arteries with transplant 

renal arteriosclerosis. These results suggest that increased 

ETAR expression may enhance the local proliferative and 

vasoconstrictive effects of ET-1 in human kidney allografts 

[45]. 

Paracrine signaling between vascular endothelial 
growth factor A, endothelial nitric oxide synthase/
nitric oxide, and endothelin-1 

It has been shown that nitric oxide (NO) has antithrombo-

genic properties, inhibiting EC activation/injury brought 

on by cytokines and promoting vasodilatation, all of which 

are protective for the vascular system. The main sites of 

endothelial NO synthase (eNOS) expression in rodents 

and humans include the medullary vasa recta, glomerular 

and peritubular capillaries, afferent/efferent arterioles, 

and the endothelium of intrarenal arteries [46,47]. Mice 

lacking eNOS displayed podocyte damage and aberrant 

mitochondria [48]. The protection of podocytes from 

TNF-α induced loss of synaptopodin by conditioned me-

dium from eNOS-overexpressing microvascular ECs in 

vitro suggests that healthy GECs protect podocytes from 

inflammatory insults in a paracrine manner by secreting 

protective mediators [49]. Furthermore, the preservation 

of glomerular integrity may rely on the paracrine signaling 

between VEGF-A, eNOS/NO, and ET-1 in podocytes and 

GECs. Under physiological conditions, through binding to 

its receptors VEGFR-1 and VEGFR-2 expressed on GECs, 

VEGF-A synthesized by podocytes can induce eNOS activa-

tion in GECs and subsequently increase NO production [8]. 

The increase of NO may negatively regulate the amount of 

VEGF-A produced by podocytes [50]. The glomerular cells 

control the proper VEGF-A production through this cross-

talk, preventing excessive vascular growth while maintain-

ing VEGF-A availability. 

In addition to NO, VEGF-A also regulates ET-1 produc-

tion by GECs. A study by Collino et al. [51] revealed that 

podocyte VEGF-A blockade causes ET-1 release from GECs. 

High levels of ET-1 prevent the formation of NO, while low 

levels of ET-1 promote its production [52]. In addition to 

cytoskeleton rearrangement, ET-1 produced from GECs 

can also result in a decrease of nephrin in podocytes [34]. 

Conversely, NO has protective effects on podocytes and 

lowers the expression of ET-1 [49]. An illustration of cross-

talk between GECs and podocytes in the VEGF-A-eNOS/

NO-ET-1 axis is shown in Fig. 2. 

Li, et al. Glomerular endothelial cells-podocytes crosstalk
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Angiopoietin signaling 

Angiopoietins in renal diseases 

ANGPTs belong to the vascular growth factor family, 

including ANGPT1, ANGPT2, ANGPT3, and ANGPT4. 

ANGPT1 works as a Tie2 receptor agonist, supporting an 

anti-inflammatory, pro-survival, and anti-permeability 

phenotype of the vasculature. Contrarily, ANGPT2, secret-

ed by ECs in response to proinflammatory stimuli, prevents 

Tie2 from being phosphorylated and thus breaks up the 

protective Tie2 signaling. Hence, it appears that the equi-

librium between ANGPT1 and ANGPT2 is what controls 

signaling through Tie2. 

Much like the VEGF-VEGFR paracrine pathway, ANGPT1 

is expressed by podocytes and MCs, while its target Tie2 is 

expressed by GECs. ANGPT1 is essential for maintaining 

healthy glomeruli, and signaling of the ANGPT1/Tie2 path-

way appears essential for maintaining the filtration barrier 

both during the normal development of the kidneys and 

during pathological circumstances. 

Global deletion of ANGPT1 before the embryonic day 

(E) 12.5 causes vascular abnormalities that lead to early 

embryonic death. The glomerulus of mice with induced 

ANGPT1 deletion at E10.5 showed abnormalities, includ-

ing dilated capillary loops, an unorganized GBM structure, 

and MC reductions, while podocytes appeared intact. The 

global ANGPT1 deletion induced later did not result in any 

obvious phenotype [53]. This indicates that ANGPT1/Tie2 

signaling is required for the development of the vascula-

Figure 2. GECs and podocytes crosstalk via the vascular endothelial growth factor (VEGF)-A-eNOS/NO-ET-1 axis. VEGF-A, syn-
thesized by podocytes, can induce eNOS activation in glomerular endothelial cells (GECs) and subsequently increase NO production 
through binding to its receptors (VEGFR-1/2) expressed on GECs. The increase of NO may negatively regulate the amount of VEGF-A 
produced by podocytes. VEGF-A can inhibit endothelin-1 (ET-1) production by GECs. High levels of ET-1 inhibit NO production. ET-1 re-
leased from GECs can induce podocyte’s cytoskeleton redistribution accompanied by a decrease of nephrin through binding with ET re-
ceptor (ETR) A and B on podocytes. NO, in its turn, inhibits ET-1 expression. Stimulating and inhibitory effects are indicated with arrows 
by adding + or -, respectively.
eNOS, endothelial nitric oxide synthase; GBM, glomerular basement membrane; NO, nitric oxide.
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ture, including glomerular capillaries, but not necessary for 

quiescent vessels. In pathological conditions like diabetes, 

ANGPT1-deficient diabetic mice displayed higher protein-

uria, mesangial matrix expansion, and glomerulosclerosis 

compared to diabetic controls. Albuminuria and GEC pro-

liferation were delayed by the repletion of the glomerular 

ANGPT1 in diabetic mice with selective podocyte-specific 

overexpression of ANGPT1 [54]. 

Moreover, a decrease in the endothelial survival markers 

VEGF-A and ANGPT1 and an increase in ANGPT2 were 

temporally associated with the loss of glomerular capil-

laries in a mouse model anti-GBM glomerulonephritis 

[55]. These findings imply that ANGPT1/Tie2 signaling 

is not only crucial for maintaining GFB function but also 

has a remarkable capacity to regulate the glomerular cap-

illary response to damage. Contrarily, the overexpression 

of ANGPT2 in podocytes increases GEC apoptosis and 

albuminuria, indicating that ANGPT2 may compete with 

ANGPT1 [56].  

Angiopoietins in kidney transplantation  

Increased ANGPT2 levels (the natural Tie2 antagonist) 

have been demonstrated to correlate with mortality in kid-

ney transplant recipients, suggesting that an unbalanced 

ANGPT/Tie2 system may be detrimental to renal transplan-

tation [57]. Ma et al. [58] showed that ANGPT1 was down-

regulated in a rat model of CAN, whereas ANGPT2 and Tie2 

were increased. These changes have a strong correlation 

with the Banff score. Exogenous delivery of a PEGylated 

synthetic Tie2 agonistic peptide can enhance graft function 

in a mouse major histocompatibility complex-mismatched 

renal transplant model by controlling endothelial activation 

and the transmigration of deleterious inflammatory cells 

into the interstitium of the transplant [59]. 

CXCL12/CXCR4/CXCR7 signaling 

CXCL12/CXCR4/CXCR7 signaling in renal diseases 

Homeostatic chemokine CXC chemokine ligand 12 

(CXCL12; stromal cell-derived factor 1) signals through its 

receptors CXCR4 and CXCR7 [60]. After being stimulated 

by their same ligand, CXCL12, both receptors can activate 

multiple cell signaling pathways and/or scavenge CXCL12 

from the extracellular space. This promotes the develop-

ment of organs and the preservation of homeostasis. In 

the kidney, podocytes can produce CXCL12, which acts 

on CXCR4 expressed by GECs and carries out an essential 

role in podocyte-EC cross-communication. Nephrogene-

sis, particularly in the formation of the renal vasculature, 

strongly benefits from CXCL12/CXCR4/CXCR7 signaling 

[61]. Similar renal phenotypes with abnormal blood vessel 

development, like the ballooning of glomerular capillaries 

and altered conformation of the renal vasculature, were 

seen in mice lacking either CXCL12 or CXCR4. Deletion 

of CXCR7 in mice, which also leads to a reduction of 

CXCR4 expression, replicated the phenotype of the CXCR4 

deficient mice, suggesting that CXCR7 closely controls 

CXCL12/CXCR4 mediated signaling between podocytes 

and glomerular capillaries [62]. Moreover, CXCL12 has a 

role in several kidney diseases, including renal cell carci-

noma, DN, LN, diarrhea-associated HUS, and acute kidney 

injury (AKI) [63]. 

CXCL12/CXCR4/CXCR7 signaling in kidney transplantation 

According to Hoffmann et al. [64], compared to healthy 

transplant kidneys, the expression of CXCL12 was consid-

erably higher in transplants with persistent fibrotic lesions. 

Indeed, CXCL12/CXCR4 induces renal TECs-mesenchymal 

transition (EMT) with the involvement of the Wnt pathway 

[65]. Renal allograft fibrosis can be successfully mitigated 

using a CXCR4 antagonist or a neutralizing antibody [66]. 

In IRI-induced renal transplantation damages, anti-CX-

CL12 antibodies could reduce IRI and chronic rejection 

[67]. On the other hand, studies also revealed that CXCL12 

is essential for CXCR4-positive cells, such as hematopoi-

etic stem cells and a fraction of mesenchymal stem cells 

(MSCs), to home and migrate to the kidney, representing a 

potential prevention for IRI-induced acute/chronic rejec-

tion and maintaining renal function [68]. 

Interleukin-6 signaling pathway 

Interleukin-6 signaling pathway in renal diseases 

IL-6 is a pleiotropic cytokine that, in addition to immu-

nological and inflammatory responses, also controls he-

matopoiesis, metabolism, and organ development. Fig. 3 
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summarizes the two signaling pathways of IL-6: the classi-

cal and trans-signaling pathways. The classical pathway is 

activated by the binding of IL-6 with the membrane-bound 

IL-6R (mIL-6R, also named CD126 or gp80), while the 

trans-signaling is induced by the interaction of IL-6 with 

a soluble form of IL6R (sIL-6R). It’s important to note that 

there is a naturally produced isoform of Gp130 called solu-

ble Gp130 (sGp130), which is identified in the bloodstream 

at relatively high concentrations (100–400 ng/mL in human 

plasma) [69]. sGp130 functions as a specific inhibitor of the 

IL-6 trans-signaling pathway because it can interact with 

the IL-6/sIL-6R [70]. It is generally accepted that IL-6 clas-

sical signaling is anti-inflammatory and trans-signaling is 

proinflammatory [71], although there is a debate [72]. 

Renal resident cells, such as podocytes, ECs, MCs, and 

TECs, can release IL-6 under certain conditions. Since 

only podocytes express the mIL-6R, which indicate that 

only podocytes can respond to IL-6 via both classical and 

Figure 3. Interleukin-6 (IL-6) signaling pathway. (A) The classical pathway is activated by binding IL-6 with the membrane-bound 
IL-6 receptor (mIL-6R). This complex then establishes a connection with two Gp130 molecules and starts the signaling process. (B) 
The trans-signaling pathway is induced by soluble form of the IL-6 receptor (sIL-6R). sIL-6R binds to IL-6, which consequently activate 
Gp130. (C) Soluble form of Gp130 (sGp130), which is found naturally produced and is detected in the circulation, can interact with the 
IL-6/sIL-6R complex, acting as a specific inhibitor of the IL-6 trans-signaling pathway. Both classical and trans-signaling pathways acti-
vation leads to the downstream intracellular signal transduction.
AKT, a serine/threonine protein kinase; ERK, extracellular signal-regulated kinase; JAK, Janus kinase; MAPK, mitogen-activated protein 
kinase kinase; m-TOR, mammalian target of rapamycin; NF-κB, nuclear factor kappa B; PI3K, phosphatidylinositol 3-kinase; RAS, rat 
sarcoma; RAF, rapidly accelerated fibrosarcoma; STAT, signal transducer and activator of transcription.
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trans-signaling pathway, while in ECs, MCs, and TECs, the 

IL-6 trans-signaling pathway is predominant. IL-6 signaling 

is involved in many kidney diseases, such as IgA nephropa-

thy, LN, DN, AKI, and chronic kidney disease [73]. 

Usually, different pathological stimuli can induce renal 

resident cells secreting IL-6, which in turn triggers the 

growth of MCs, the recruitment of inflammatory cells, 

and the overexpression of the angiotensin (Ang) II type 1 

receptor in ECs with the consequence of Ang II-induced 

vasoconstriction, reactive oxygen species production, and 

endothelial dysfunction [74]. 

Interleukin-6 signaling pathway in kidney transplantation 

It is widely known that IL-6 has a role in both acute and 

chronic kidney allograft rejection. Renal expression of IL-6 

was elevated with decreased intragraft Foxp3+ Tregs after 

allograft rejection in a mouse kidney transplant model 

[75]. Furthermore, the absence of donor-produced IL-6 in-

creased the survival of the renal allograft. It was correlated 

with higher levels of intragraft Tregs and lower levels of cir-

culating anti-graft alloantibodies, indicating that selective 

inhibition of donor IL-6 signaling may prevent both hu-

moral and cellular rejection [76]. In an experimental model 

of CAN, IF and tubular atrophy were demonstrated to be 

mediated by intragraft B-cell production of chemokines 

and cytokines, including IL-6. This finding indicates that 

IL-6 may play a potential role in causing CAN [77]. Renal 

allograft rejection in human kidney transplant patients is 

accompanied by increased IL-6 levels in the blood, urine, 

and biopsy tissue [78,79]. Rejection occurred in renal al-

lograft recipients who developed high blood IL-6 and IL-17 

levels during tolerance induction utilizing a mixed chime-

rism method, but recipients without high IL-6/IL-17 expe-

rienced long-term survival without rejection [80]. What’s 

more noteworthy is that donor genotypes for IL6 and IL6R, 

but not recipient genotypes, serve as an independent pre-

dictive biomarker for biopsy-confirmed renal allograft re-

jection [81]. 

It’s important to note that IL-6 signaling seems to have 

a protective role by boosting the repair process in some 

pathological circumstances, such as the ischemia-reperfu-

sion–induced AKI model. By an underlying anti-oxidative 

stress mechanism, stimulation of IL-6 trans-signaling dra-

matically lowers kidney damage and protects renal func-

tion [82]. More interestingly, Kuravi et al. [83] proposed the 

existence of a crosstalk between podocytes and ECs via IL-

6, which was demonstrated in a podocyte-EC coculture 

system. Particularly, TNF-α stimulated podocytes to release 

IL-6, which increased the expression of suppressor of cy-

tokine signaling 3 in glomerular endothelium and induced 

IL-6’s immunosuppressive effect, hence limiting the migra-

tion of neutrophils to the endothelium [83]. 

Extracellular vesicles 

Extracellular vesicles: a novel frontier in renal diseases 

Recently, cell-cell communication mediated by EVs is an 

emerging biological concept. Almost all cells secrete EVs, 

which are divided into exosomes and microparticles based 

on their size. Contrary to signaling molecules secreted by 

the cells, which are well-defined proteins with specific 

roles, EVs contain a concentrated complex of molecules, in-

cluding lipids, nucleic acids, proteins, glycans, and metabo-

lites. These molecules can exert contemporarily synergistic 

or antagonistic functions. The EVs cargo is protected from 

enzymatic degradation in the extracellular environment 

and can be delivered to distant cells. Moreover, EVs-mR-

NA can be horizontally transferred to the target cells and 

translated into the corresponding protein [84]. Therefore, 

cell-to-cell communication, including podocytes and 

GECs bidirectional crosstalk through EVs, is an intriguing 

research topic. Wu et al. [85] found that high glucose (HG) 

causes GECs to undergo the endothelial-to-mesenchymal 

transition (EndMT), and HG-treated cells with the End-

MT produce more exosomes than normal glucose-treated 

GECs. They demonstrated that exosomes originating from 

GECs undergoing EndMT might be taken up by podocytes 

and can cause the podocyte to undergo epithelial-to-mes-

enchymal transition (EMT) and barrier failure. Moreover, 

their study revealed that TGF-β1 mRNA is more abundant 

in exosomes from HG-treated GECs and likely causes 

EMT and malfunctioning of podocytes via canonical Wnt/

β-catenin signaling. Their findings imply that renal fibro-

sis in DN is contributed by the paracrine communication 

between cells undergoing the EndMT and podocytes via 

exosomes. Therefore, protecting GECs from the EndMT 

and inhibiting TGF-β1–containing exosome release from 

GECs could be a new therapeutic strategy to prevent renal 
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fibrosis in DN [85]. According to recent research by Medica 

et al. [86], an L-selectin–based mechanism was primarily 

responsible for the internalization of EVs produced from 

endothelial progenitor cells (EPCs) in both GECs and 

podocytes. By modifying gene expression and triggering 

the release of growth factors like VEGF-A and hepatocyte 

growth factor, EVs improved the development of capil-

lary-like structures and cell migration in GECs. EPC-de-

rived EVs defended GECs against apoptosis in the presence 

of cytokines such as IL-6, TNF-α, and complement protein 

C5a by reducing oxidative stress and blocking leukocyte 

adherence by limiting the production of adhesion mol-

ecules (ICAM-1, VCAM-1, E-selectin). In podocytes, EVs 

reduced apoptosis and blocked the loss of nephrin brought 

on by cytokines and C5a. More intriguingly, EPC-derived 

EVs protected podocytes from apoptosis and a change in 

perm selectivity linked to inflammation-mediated damage 

in a coculture system of GECs/podocytes that simulated 

GFB. Moreover, pretreating EVs with RNase rendered their 

protective actions ineffective, indicating the critical role of 

RNA transfer from EVs to injured glomerular cells. Their 

findings suggested that the EPC-derived EVs protected GFB 

integrity against complement- and cytokine-induced dam-

age, indicating a potential role as therapeutic agents for 

drug-resistant glomerulonephritis [86]. 

Extracellular vesicles in kidney transplantation 

Recently, the relevance and role of EVs in renal transplan-

tation have attracted increasing attention. Finding the di-

agnostic and prognostic biomarkers for evaluating donor 

kidney quality, graft function, and kidney allograft rejection 

were the main goals of the EV investigations. Turco et al. [87] 

demonstrated that specific populations of EVs derived from 

renal parenchymal cells identify kidney structural changes 

(nephron hypertrophy and nephrosclerosis) through profil-

ing urinary EVs in 138 kidney donors at the time of live-do-

nor transplantation, which may allow clinicians to assess 

donor kidney health and predict graft function. Using pro-

teome and micro RNA (miRNA) analysis, Lozano-Ramos et 

al. [88] found that urinary EVs from live donors had higher 

concentrations of the miR-326 (which targets the B-cell 

lymphoma 2–related apoptotic pathway) than those from 

deceased donors. It’s interesting to note that EVs can also 

be found in donors’ preservation fluid both after circulato-

ry death and after brain death. In the first 7 days after trans-

plantation, miRNA profiling in EVs may be related to graft 

function [89]. In a recent study, Franzin et al. [90] analyzed 

the miRNA expression profile of EVs extracted from the 

plasma of patients with antibody-mediated allograft rejec-

tion (AMR). Their research has shown that AMR-derived 

EVs can cause EndMT and tubular senescence. According 

to the miRNA expression profile of EVs, miR-604, miR-

515-3p, miR-let-7d-5p, and miR-590-3p were upregulated, 

while miR-24-3p and miR-29a-3p were downregulated. Tu-

bular senescence and EndMT were entirely reversed by the 

RNase-mediated digestion of EV cargo, indicating that EVs 

play a significant role in the inflammatory, aging, and pro-

fibrotic kidney response during the development of AMR 

via their miRNA content [90]. 

Research on EVs has also concentrated on their capacity 

to provide early prognostic information regarding the out-

comes of kidney transplants, such as in situations of chron-

ic renal allograft dysfunction or delayed graft function. The 

EVs derived from a variety of sources, including MSCs [91], 

human-induced pluripotent stem cells [92], renal tubular 

cells [93], and EPCs [94], were shown to reduce IRI through 

antiapoptotic, anti-oxidative, and anti-inflammatory ef-

fects, as well as by inducing regenerative programs that 

lead to renoprotection in IRI.  

Glutamatergic signaling 

Given the intricate structure of podocytes and the continu-

al stimulation and stress brought on by blood pressure and 

contents, these cells probably need a precise and quick 

modality of communication among themselves and with 

the other glomerular cells as well. Studies from our group 

have demonstrated that podocytes possess glutamate-con-

taining vesicular structures that undergo spontaneous and 

regulated exo-endocytosis [95]. Deletion of Rab3A, a small 

GTPase that controls glutamate exocytosis, or blocking 

the glutamate ionotropic N-methyl-D-aspartate receptor 

(NMDAR) with specific antagonists can alter glutamatergic 

signaling in podocytes, which can cause significant cyto-

skeletal reorganization, nephrin redistribution, and an ele-

vated urinary albumin/creatinine ratio in mice [96]. These 

findings imply that the GFB’s integrity is sustained by gluta-

matergic signaling mediated by podocytes. Moreover, using 

a mouse podocyte-EC coculture system, which mimics the 
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GFB in vitro, we demonstrated the existence of a crosstalk 

between those two cell types via glutamate signaling. We 

confirmed that the ionotropic glutamate receptor NMDAR 

and the metabotropic receptor Grm1 are present in mouse 

GECs in vivo as well as the ECs in culture. The addition of 

glutamate to the endothelial side of the coculture potently 

increased albumin permeability and the same effect was 

obtained by adding to the podocyte medium alpha-latro-

toxin, a substance known to induce glutamate release from 

podocytes. In addition, both treatments caused increased 

endothelial p44/42 mitogen-activated protein kinase 

(MAPK). Preincubation of ECs with the NMDAR antagonist 

MK-801 was able to prevent albumin leakage from the GFB 

model and abolish 44/42-MAPK activation induced both 

by glutamate and by alpha-latrotoxin [97]. Those results 

suggested that excessive activation of EC glutamate signal-

ing can result in the alteration of GFB permeability. 

Conclusion 

Much evidence suggests that the cell-cell communication 

between resident cells in the glomerulus through signaling 

molecules is involved in glomerular homeostasis, renal dis-

eases, and kidney transplants (Fig. 4; Supplementary Table 

1 and 2, available online). Our understanding of glomeru-

lar cross-communication has substantially expanded with 

the increased use of cell-specific transgenic models and 

new techniques, such as genomics, transcriptomics, pro-

teomics, and metabolomics. However, much research must 

be conducted on discovering novel signaling cascades, 

particularly those released by EVs from various cell types. 

The identification of these mediators as well as a better 

understanding of already established crosstalk molecules, 

may lead to the recognition of new targets for managing 

kidney transplantation and the prevention and treatment 

of glomerular disorders. 

Figure 4. The overall signaling pathways between podocytes and glomerular endothelial cells (GECs). Through binding to vascular 
endothelial growth factor (VEGF) receptor (VEGFR)-1/2 expressed on GECs, VEGF-A synthesized by podocytes can induce endothelial 
nitric oxide synthase (eNOS) activation in GECs and subsequently increase nitric oxide (NO) production. The increase of NO may neg-
atively regulate the amount of VEGF-A produced by podocytes. VEGF-A can inhibit endothelin-1 (ET-1) production by GECs through the 
activation of eNOS. High levels of ET-1 inhibit NO production. ET-1 released from GECs can activate ET receptor (ETR) A and B on podo-
cytes. Angiopoietin 1/2 (ANGPT1/2) produced by podocytes can bind with the Tie2 expressed on GECs. CXCL12 secreted by podocytes 
can activate CXCR4/7 on GECs. On podocytes, interkeukin-6 (IL-6) can bind with the membrane-bound IL-6 receptor (mIL-6R) and acti-
vate the classical signaling pathway. Moreover, IL-6 also can form a complex with soluble form of the IL-6 receptor (sIL-6R) and activate 
the trans-signaling pathway. On GECs, since mIL-6R is absent, only IL-6 trans-signaling can be activated. Extracellular vesicles (EVs) 
released by both podocytes and GECs act as bidirectional crosstalk mediators.
GBM, glomerular basement membrane.
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