1. Zhou J. Polycystins and primary cilia: primers for cell cycle progression.
Annu Rev Physiol 71:2009;83–113.
2. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies.
N Engl J Med 364:2011;1533–1543.
3. Berbari NF, O׳Connor AK, Haycraft CJ, Yoder BK. The primary cilium as a complex signaling center.
Curr Biol 19:2009;R526–R535.
4. Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia.
J Am Soc Nephrol 13:2002;2508–2516.
5. Harris PC, Torres VE. Polycystic kidney disease.
Annu Rev Med 60:2009;321–337.
6. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells.
Nat Genet 33:2003;129–137.
7. Igarashi P, Somlo S. Genetics and pathogenesis of polycystic kidney disease.
J Am Soc Nephrol 13:2002;2384–2398.
8. Igarashi P, Somlo S. Polycystic kidney disease.
J Am Soc Nephrol 18:2007;1371–1373.
9. Satir P, Christensen ST. Structure and function of mammalian cilia.
Histochem Cell Biol 129:2008;687–693.
10. Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N, Kinter MT, Kane ME, Obara T, Weimbs T. Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease.
Dev Cell 10:2006;57–69.
11. Grimm DH, Cai Y, Chauvet V, Rajendran V, Zeltner R, Geng L, Avner ED, Sweeney W, Somlo S, Caplan MJ. Polycystin-1 distribution is modulated by polycystin-2 expression in mammalian cells.
J Biol Chem 278:2003;36786–36793.
12. Pflugers Arch - Eur J Physiol.doi:10.1007/s00424-014-1516-0.
13. Silverman MA, Leroux MR. Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia.
Trends Cell Biol 19:2009;306–316.
14. Kim S, Dynlacht BD. Assembling a primary cilium.
Curr Opin Cell Biol 25:2013;506–511.
15. Gallagher AR, Germino GG, Somlo S. Molecular advances in autosomal dominant polycystic kidney disease.
Adv Chronic Kidney Dis 17:2010;118–130.
16. Wu G, Tian X, Nishimura S, Markowitz GS, D׳Agati V, Park JH, Yao L, Li L, Geng L, Zhao H, Edelmann W, Somlo S. Trans-heterozygous Pkd1 and Pkd2 mutations modify expression of polycystic kidney disease.
Hum Mol Genet 11:2002;1845–1854.
17. Brasier JL, Henske EP. Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis.
J Clin Invest 99:1997;194–199.
18. Qian F, Watnick TJ, Onuchic LF, Germino GG. The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I.
Cell 87:1996;979–987.
19. Arnaout MA. Molecular genetics and pathogenesis of autosomal dominant polycystic kidney disease.
Annu Rev Med 52:2001;93–123.
20. Pei Y. A “two-hit” model of cystogenesis in autosomal dominant polycystic kidney disease?
Trends Mol Med 7:2001;151–156.
21. Piontek K, Menezes LF, Garcia-Gonzalez MA, Huso DL, Germino GG. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1.
Nat Med 13:2007;1490–1495.
22. Koptides M, Mean R, Demetriou K, Pierides A, Deltas CC. Genetic evidence for a trans-heterozygous model for cystogenesis in autosomal dominant polycystic kidney disease.
Hum Mol Genet 9:2000;447–452.
23. Fedeles SV, Tian X, Gallagher AR, Mitobe M, Nishio S, Lee SH, Cai Y, Geng L, Crews CM, Somlo S. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation.
Nat Genet 43:2011;639–647.
24. Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K, San Millan JL, Gamble V, Harris PC. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains.
Nat Genet 10:1995;151–160.
25. Harris PC. What is the role of somatic mutation in autosomal dominant polycystic kidney disease?
J Am Soc Nephrol 21:2010;1073–1076.
26. Scheffers MS, van der Bent P, Prins F, Spruit L, Breuning MH, Litvinov SV, de Heer E, Peters DJ. Polycystin-1, the product of the polycystic kidney disease 1 gene, co-localizes with desmosomes in MDCK cells.
Hum Mol Genet 9:2000;2743–2750.
27. Foggensteiner L, Bevan AP, Thomas R, Coleman N, Boulter C, Bradley J, Ibraghimov-Beskrovnaya O, Klinger K, Sandford R. Cellular and subcellular distribution of polycystin-2, the protein product of the PKD2 gene.
J Am Soc Nephrol 11:2000;814–827.
28. Petri ET, Celic A, Kennedy SD, Ehrlich BE, Boggon TJ, Hodsdon ME. Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2+-dependent regulation of polycystin-2 channel activity.
Proc Natl Acad Sci U S A 107:2010;9176–9181.
29. Koulen P, Cai Y, Geng L, Maeda Y, Nishimura S, Witzgall R, Ehrlich BE, Somlo S. Polycystin-2 is an intracellular calcium release channel.
Nat Cell Biol 4:2002;191–197.
30. Geng L, Okuhara D, Yu Z, Tian X, Cai Y, Shibazaki S, Somlo S. Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif.
J Cell Sci 119:2006;1383–1395.
31. Celic A, Petri ET, Demeler B, Ehrlich BE, Boggon TJ. Domain mapping of the polycystin-2 C-terminal tail using de novo molecular modeling and biophysical analysis.
J Biol Chem 283:2008;28305–28312.
32. Celic AS, Petri ET, Benbow J, Hodsdon ME, Ehrlich BE, Boggon TJ. Calcium-induced conformational changes in C-terminal tail of polycystin-2 are necessary for channel gating.
J Biol Chem 287:2012;17232–17240.
33. Ferreira FM, Oliveira LC, Germino GG, Onuchic JN, Onuchic LF. Macromolecular assembly of polycystin-2 intracytosolic C-terminal domain.
Proc Natl Acad Sci U S A 108:2011;9833–9838.
34. Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum.
Pediatr Nephrol 26:2011;1039–1056.
35. Ware SM, Aygun MG, Hildebrandt F. Spectrum of clinical diseases caused by disorders of primary cilia.
Proc Am Thorac Soc 8:2011;444–450.
36. Yamaguchi T, Nagao S, Wallace DP, Belibi FA, Cowley BD, Pelling JC, Grantham JJ. Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys.
Kidney Int 63:2003;1983–1994.
37. Yamaguchi T, Pelling JC, Ramaswamy NT, Eppler JW, Wallace DP, Nagao S, Rome LA, Sullivan LP, Grantham JJ. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway.
Kidney Int 57:2000;1460–1471.
38. Pei Y, Paterson AD, Wang KR, He N, Hefferton D, Watnick T, Germino GG, Parfrey P, Somlo S St, George-Hyslop P. Bilineal disease and trans-heterozygotes in autosomal dominant polycystic kidney disease.
Am J Hum Genet 68:2001;355–363.
39. Jiang ST, Chiou YY, Wang E, Lin HK, Lin YT, Chi YC, Wang CK, Tang MJ, Li H. Defining a link with autosomal-dominant polycystic kidney disease in mice with congenitally low expression of Pkd1.
Am J Pathol 168:2006;205–220.
40. Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, Leonhard WN, van de Wal A, Ward CJ, Verbeek S, Deruiter MC, Breuning MH, de Heer E, Peters DJ. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease.
Hum Mol Genet 13:2004;3069–3077.
41. Rossetti S, Kubly VJ, Consugar MB, Hopp K, Roy S, Horsley SW, Chauveau D, Rees L, Barratt TM, van׳t Hoff WG, Niaudet P, Torres VE, Harris PC. Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease.
Kidney Int 75:2009;848–855.
42. Wang E, Hsieh-Li HM, Chiou YY, Chien YL, Ho HH, Chin HJ, Wang CK, Liang SC, Jiang ST. Progressive renal distortion by multiple cysts in transgenic mice expressing artificial microRNAs against Pkd1.
J Pathol 222:2010;238–248.
43. Hopp K, Ward CJ, Hommerding CJ, Nasr SH, Tuan HF, Gainullin VG, Rossetti S, Torres VE, Harris PC. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity.
J Clin Invest 122:2012;4257–4273.
44. Pritchard L, Sloane-Stanley JA, Sharpe JA, Aspinwall R, Lu W, Buckle V, Strmecki L, Walker D, Ward CJ, Alpers CE, Zhou J, Wood WG, Harris PC. A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype.
Hum Mol Genet 9:2000;2617–2627.
45. Fedeles SV, Gallagher AR, Somlo S. Polycystin-1: a master regulator of intersecting cystic pathways.
Trends Mol Med 20:2014;251–260.
46. Gerdes JM, Davis EE, Katsanis N. The vertebrate primary cilium in development, homeostasis, and disease.
Cell 137:2009;32–45.
47. Jonassen JA, San Agustin J, Follit JA, Pazour GJ. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease.
J Cell Biol 183:2008;377–384.
48. Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease.
Curr Biol 12:2002;R378–R380.
49. Huang K, Diener DR, Mitchell A, Pazour GJ, Witman GB, Rosenbaum JL. Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella.
J Cell Biol 179:2007;501–514.
50. Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, Igarashi P. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease.
Proc Natl Acad Sci U S A 100:2003;5286–5291.
51. Haycraft CJ, Swoboda P, Taulman PD, Thomas JH, Yoder BK. The
C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms.
Development 128:2001;1493–1505.
52. Davenport JR, Watts AJ, Roper VC, Croyle MJ, van Groen T, Wyss JM, Nagy TR, Kesterson RA, Yoder BK. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease.
Curr Biol 17:2007;1586–1594.
53. Ma M, Tian X, Igarashi P, Pazour GJ, Somlo S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease.
Nat Genet 45:2013;1004–1012.
54. Yoshiba S, Shiratori H, Kuo IY, Kawasumi A, Shinohara K, Nonaka S, Asai Y, Sasaki G, Belo JA, Sasaki H, Nakai J, Dworniczak B, Ehrlich BE, Pennekamp P, Hamada H. Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2.
Science 338:2012;226–231.
55. Tanaka Y, Okada Y, Hirokawa N. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination.
Nature 435:2005;172–177.