1. Ziyadeh F.N.. Mediators of diabetic renal disease: the case for TGF-Beta as the major mediator.
J Am Soc Nephrol 15(Suppl 1):2004;S55–S57.
2. Decleves A.E., Sharma K.. New pharmacological treatments for improving renal outcomes in diabetes.
Nat Rev Nephrol 6:2010;371–380.
3. Ramasamy R., Yan S.F., Schmidt A.M.. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications.
Ann N Y Acad Sci 1243:2011;88–102.
4. Brownlee M.. The pathobiology of diabetic complications: a unifying mechanism.
Diabetes 54:2005;1615–1625.
5. Leehey D.J., Singh A.K., Alavi N., Singh R.. Role of angiotensin II in diabetic nephropathy.
Kidney Int Suppl 77:2000;S93–S98.
6. Brosius F.C. 3rd. New insights into the mechanisms of fibrosis and sclerosis in diabetic nephropathy.
Rev Endocr Metab Disord 9:2008;245–254.
7. Villeneuve L.M., Natarajan R.. The role of epigenetics in the pathology of diabetic complications.
Am J Physiol Renal Physiol 299:2010;F14–F25.
8. Pirola L., Balcerczyk A., Okabe J., El-Osta A.. Epigenetic phenomena linked to diabetic complications.
Nat Rev Endocrinol 6:2010;665–675.
9. Susztak K., Böttinger E.P.. Diabetic nephropathy: a frontier for personalized medicine.
J Am Soc Nephrol 17:2006;361–367.
11. Thomas M.C., Groop P.H., Tryggvason K.. Towards understanding the inherited susceptibility for nephropathy in diabetes.
Curr Opin Nephrol Hypertens 21:2012;195–202.
12. Rincon-Choles H., Thameem F., Lehman D.M., Arya R., Arar N., Duggirala R., Stern M.P., Abboud H.E.. Genetic basis of diabetic nephropathy.
Am J Ther 12:2005;555–561.
15. Goldberg A.D., Allis C.D., Bernstein E.. Epigenetics: a landscape takes shape.
Cell 128:2007;635–638.
16. Bonasio R., Tu S., Reinberg D.. Molecular signals of epigenetic states.
Science 330:2010;612–616.
17. Kouzarides T.. Chromatin modifications and their function.
Cell 128:2007;693–705.
18. Miranda T.B., Jones P.A.. DNA methylation: the nuts and bolts of repression.
J Cell Physiol 213:2007;384–390.
19. Natoli G.. Maintaining cell identity through global control of genomic organization.
Immunity 33:2010;12–24.
20. Portela A., Esteller M.. Epigenetic modifications and human disease.
Nat Biotechnol 28:2010;1057–1068.
21. Feil R., Fraga M.F.. Epigenetics and the environment: emerging patterns and implications.
Nat Rev Genet 13:2011;97–109.
22. Woroniecki R., Gaikwad A.B., Susztak K.. Fetal environment, epigenetics, and pediatric renal disease.
Pediatr Nephrol 26:2011;705–711.
23. Fagerudd J., Forsblom C., Pettersson-Fernholm K., Saraheimo M., Wadén J., Rönnback M., Rosengård-Bärlund M., Björkesten C.G., Thorn L., Wessman M., Groop P.H.. Low birth weight does not increase the risk of nephropathy in Finnish type 1 diabetic patients.
Nephrol Dial Transplant 21:2006;2159–2165.
24. Luger K., Mader A.W., Richmond R.K., Sargent D.F., Richmond T.J.. Crystal structure of the nucleosome core particle at 2.8 A resolution.
Nature 389:1997;251–260.
25. Zhou V.W., Goren A., Bernstein B.E.. Charting histone modifications and the functional organization of mammalian genomes.
Nat Rev Genet 12:2011;7–18.
26. Bernstein B.E., Meissner A., Lander E.S.. The mammalian epigenome.
Cell 128:2007;669–681.
27. Sansom O.J., Maddison K., Clarke A.R.. Mechanisms of disease: methyl-binding domain proteins as potential therapeutic targets in cancer.
Nat Clin Pract Oncol 4:2007;305–315.
29. Chen Z.X., Riggs A.D.. DNA methylation and demethylation in mammals.
J Biol Chem 286:2011;18347–18353.
30. Haines T.R., Rodenhiser D.I., Ainsworth P.J.. Allele-specific non-CpG methylation of the Nf1 gene during early mouse development.
Dev Biol 240:2001;585–598.
31. Ramsahoye B.H., Biniszkiewicz D., Lyko F., Clark V., Bird A.P., Jaenisch R.. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a.
Proc Natl Acad Sci U S A 97:2000;5237–5242.
33. Han H., Cortez C.C., Yang X., Nichols P.W., Jones P.A., Liang G.. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter.
Hum Mol Genet 20:2011;4299–4310.
34. Jones P.A., Baylin S.B.. The epigenomics of cancer.
Cell 128:2007;683–692.
36. Bhaumik S.R., Smith E., Shilatifard A.. Covalent modifications of histones during development and disease pathogenesis.
Nat Struct Mol Biol 14:2007;1008–1016.
37. Allis C.D., Berger S.L., Cote J., Dent S., Jenuwien T., Kouzarides T., Pillus L., Reinberg D., Shi Y., Shiekhattar R., Shilatifard A., Workman J., Zhang Y.. New nomenclature for chromatin-modifying enzymes.
Cell 131:2007;633–636.
38. Roth S.Y., Denu J.M., Allis C.D.. Histone acetyltransferases.
Annu Rev Biochem 70:2001;81–120.
39. Ramos Y.F., Hestand M.S., Verlaan M., Krabbendam E., Ariyurek Y., van Galen M., van Dam H., van Ommen G.J., den Dunnen J.T., Zantema A., t Hoen P.A.. Genome-wide assessment of differential roles for p300 and CBP in transcription regulation.
Nucleic Acids Res 38:2010;5396–5408.
40. Kim T.K., Hemberg M., Gray J.M., Costa A.M., Bear D.M., Wu J., Harmin D.A., Laptewicz M., Barbara-Haley K., Kuersten S., Markenscoff-Papadimitriou E., Kuhl D., Bito H., Worley P.F., Kreiman G., Greenberg M.E.. Widespread transcription at neuronal activity-regulated enhancers.
Nature 465:2010;182–187.
41. Visel A., Blow M.J., Li Z., Zhang T., Akiyama J.A., Holt A., Plajzer-Frick I., Shoukry M., Wright C., Chen F., Afzal V., Ren B., Rubin E.M., Pennacchio L.A.. ChIP-seq accurately predicts tissue-specific activity of enhancers.
Nature 457:2009;854–858.
42. Jin F., Li Y., Ren B., Natarajan R.. Enhancers: multi-dimensional signal integrators.
Transcription 2:2011;226–230.
43. Yang X.J., Seto E.. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention.
Oncogene 26:2007;5310–5318.
44. Dovey O.M., Foster C.T., Cowley S.M.. Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation.
Proc Natl Acad Sci U S A 107:2010;8242–8247.
45. Margariti A., Zampetaki A., Xiao Q., Zhou B., Karamariti E., Martin D., Yin X., Mayr M., Li H., Zhang Z., De Falco E., Hu Y., Cockerill G., Xu Q., Zeng L.. Histone deacetylase 7 controls endothelial cell growth through modulation of beta-catenin.
Circ Res 106:2010;1202–1211.
46. Trivedi C.M., Luo Y., Yin Z., Zhang M., Zhu W., Wang T., Floss T., Goettlicher M., Noppinger P.R., Wurst W., Ferrari V.A., Abrams C.S., Gruber P.J., Epstein J.A.. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity.
Nat Med 13:2007;324–331.
47. Selvi B.R., Mohankrishna D.V., Ostwal Y.B., Kundu T.K.. Small molecule modulators of histone acetylation and methylation: a disease perspective.
Biochim Biophys Acta 810–828:1799;2010.
48. Shi Y.. Histone lysine demethylases: emerging roles in development, physiology and disease.
Nat Rev Genet 8:2007;829–833.
49. Shi Y., Whetstine J.R.. Dynamic regulation of histone lysine methylation by demethylases.
Mol Cell 25:2007;1–14.
50. Hon G.C., Hawkins R.D., Ren B.. Predictive chromatin signatures in the mammalian genome.
Hum Mol Genet 18:2009;R195–R201.
51. Barski A., Cuddapah S., Cui K., Roh T.Y., Schones D.E., Wang Z., Wei G., Chepelev I., Zhao K.. High-resolution profiling of histone methylations in the human genome.
Cell 129:2007;823–837.
52. Jin F., Li Y., Ren B., Natarajan R.. PU.1 and C/EBP(alpha) synergistically program distinct response to NF-kappaB activation through establishing monocyte specific enhancers.
Proc Natl Acad Sci U S A 108:2011;5290–5295.
53. Taberlay P.C., Kelly T.K., Liu C.C., You J.S., De Carvalho D.D., Miranda T.B., Zhou X.J., Liang G., Jones P.A.. Polycomb-repressed genes have permissive enhancers that initiate reprogramming.
Cell 147:2011;1283–1294.
54. Herz H.M., Nakanishi S., Shilatifard A.. The curious case of bivalent marks.
Dev Cell 17:2009;301–303.
55. Cedar H., Bergman Y.. Linking DNA methylation and histone modification: patterns and paradigms.
Nat Rev Genet 10:2009;295–304.
56. Giacco F., Brownlee M.. Oxidative stress and diabetic complications.
Circ Res 107:2010;1058–1070.
57. Reddy M.A., Natarajan R.. Epigenetic mechanisms in diabetic vascular complications.
Cardiovasc Res 90:2011;421–429.
58. Bantignies F., Cavalli G.. Cellular memory and dynamic regulation of polycomb group proteins.
Curr Opin Cell Biol 18:2006;275–283.
59. Francis N.J., Follmer N.E., Simon M.D., Aghia G., Butler J.D.. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro.
Cell 137:2009;110–122.
60. Morgan H.D., Sutherland H.G., Martin D.I., Whitelaw E.. Epigenetic inheritance at the agouti locus in the mouse.
Nat Genet 23:1999;314–318.
62. Pentinat T., Ramon-Krauel M., Cebria J., Diaz R., Jimenez-Chillaron J.C.. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition.
Endocrinology 151:2010;5617–5623.
63. Groth A., Corpet A., Cook A.J., Roche D., Bartek J., Lukas J., Almouzni G.. Regulation of replication fork progression through histone supply and demand.
Science 318:2007;1928–1931.
64. Ceriello A.. Hypothesis: the “metabolic memory“, the new challenge of diabetes.
Diabetes Res Clin Pract 86(Suppl 1):2009;S2–S6.
65. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group . Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus.
JAMA 287:2002;2563–2569.
66. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group . Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study.
JAMA 290:2003;2159–2167.
67. Pop-Busui R., Low P.A., Waberski B.H., Martin C.L., Albers J.W., Feldman E.L., Sommer C., Cleary P.A., Lachin J.M., Herman W.H.. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC).
Circulation 119:2009;2886–2893.
68. de Boer I.H., Sun W., Cleary P.A., Lachin J.M., Molitch M.E., Steffes M.W., Zinman B.. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes.
N Engl J Med 365:2011;2366–2376.
69. White N.H., Sun W., Cleary P.A., Danis R.P., Davis M.D., Hainsworth D.P., Hubbard L.D., Lachin J.M., Nathan D.M.. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial.
Arch Ophthalmol 126:2008;1707–1715.
70. de Boer I.H., Rue T.C., Cleary P.A., Lachin J.M., Molitch M.E., Steffes M.W., Sun W., Zinman B., Brunzell J.D., White N.H., Danis R.P., Davis M.D., Hainsworth D., Hubbard L.D., Nathan D.M.. Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort.
Arch Intern Med 171:2011;412–420.
71. Colagiuri S., Cull C.A., Holman R.R.. Are lower fasting plasma glucose levels at diagnosis of type 2 diabetes associated with improved outcomes? U.K. prospective diabetes study 61.
Diabetes Care 25:2002;1410–1417.
72. Holman R.R., Paul S.K., Bethel M.A., Matthews D.R., Neil H.A.. 10-year follow-up of intensive glucose control in type 2 diabetes.
N Engl J Med 359:2008;1577–1589.
73. Patel A., MacMahon S., Chalmers J., Neal B., Billot L., Woodward M., Marre M., Cooper M., Glasziou P., Grobbee D., Hamet P., Harrap S., Heller S., Liu L., Mancia G., Mogensen C.E., Pan C., Poulter N., Rodgers A., Williams B., Bompoint S., de Galan B.E., Joshi R., Travert F.. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes.
N Engl J Med 358:2008;2560–2572.
74. Ceriello A., Esposito K., Piconi L., Ihnat M.A., Thorpe J.E., Testa R., Boemi M., Giugliano D.. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients.
Diabetes 57:2008;1349–1354.
75. Roy S., Sala R., Cagliero E., Lorenzi M.. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory.
Proc Natl Acad Sci U S A 87:1990;404–408.
77. Li S.L., Reddy M.A., Cai Q., Meng L., Yuan H., Lanting L., Natarajan R.. Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice.
Diabetes 55:2006;2611–2619.
78. Villeneuve L.M., Reddy M.A., Lanting L.L., Wang M., Meng L., Natarajan R.. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes.
Proc Natl Acad Sci U S A 105:2008;9047–9052.
79. Engerman R.L., Kern T.S.. Progression of incipient diabetic retinopathy during good glycemic control.
Diabetes 36:1987;808–812.
80. Chan P.S., Kanwar M., Kowluru R.A.. Resistance of retinal inflammatory mediators to suppress after reinstitution of good glycemic control: novel mechanism for metabolic memory.
J Diabetes Complications 24:2010;55–63.
81. Kowluru R.A.. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats.
Diabetes 52:2003;818–823.
82. Kowluru R.A., Abbas S.N., Odenbach S.. Reversal of hyperglycemia and diabetic nephropathy: effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats.
J Diabetes Complications 18:2004;282–288.
84. Yan S.F., Ramasamy R., Bucciarelli L.G., Wendt T., Lee L.K., Hudson B.I., Stern D.M., Lalla E., Yan D.U., Rong S., Naka L.L., Schmidt Y.. AM: RAGE and its ligands: a lasting memory in diabetic complications?
Diab Vasc Dis Res 1:2004;10–20.
85. Yan S.F., Ramasamy R., Schmidt A.M.. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications.
Nat Clin Pract Endocrinol Metab 4:2008;285–293.
86. Dolinoy D.C., Jirtle R.L.. Environmental epigenomics in human health and disease.
Environ Mol Mutagen 49:2008;4–8.
87. Ling C., Del Guerra S., Lupi R., Rönn T., Granhall C., Luthman H., Masiello P., Marchetti P., Groop L., Del Prato S.. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion.
Diabetologia 51:2008;615–622.
88. Barres R., Osler M.E., Yan J., Rune A., Fritz T., Caidahl K., Krook A., Zierath J.R.. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density.
Cell Metab 10:2009;189–198.
89. Nikoshkov A., Sunkari V., Savu O., Forsberg E., Catrina S.B., Brismar K.. Epigenetic DNA methylation in the promoters of the Igf1 receptor and insulin receptor genes in db/db mice.
Epigenetics 6:2011;405–409.
90. Yang B.T., Dayeh T.A., Kirkpatrick C.L., Taneera J., Kumar R., Groop L., Wollheim C.B., Nitert M.D., Ling C.. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets.
Diabetologia 54:2011;360–367.
91. Zhao J., Goldberg J., Bremner J.D., Vaccarino V.. Global DNA methylation is associated with insulin resistance: a monozygotic twin study.
Diabetes 61:2012;542–546.
92. Fawcett K.A., Barroso I.. The genetics of obesity: FTO leads the way.
Trends Genet 26:2010;266–274.
93. Toperoff G., Aran D., Kark J.D., Rosenberg M., Dubnikov T., Nissan B., Wainstein J., Friedlander Y., Levy-Lahad E., Glaser B., Hellman A.. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood.
Hum Mol Genet 21:2012;371–383.
94. Brennan E.P., Ehrich M., Brazil D.P., Crean J.K., Murphy M., Sadlier D.M., Martin F., Godson C., van den Boom D., Maxwell A.P., Savage D.A.. DNA methylation profiling in cell models of diabetic nephropathy.
Epigenetics 5:2010;396–401.
95. Williams K.T., Garrow T.A., Schalinske K.L.. Type I diabetes leads to tissue-specific DNA hypomethylation in male rats.
J Nutr 138:2008;2064–2069.
96. Williams K.T., Schalinske K.L.. Tissue-specific alterations of methyl group metabolism and DNA hypermethylation in the Zucker (type 2) diabetic fatty rat.
Diabetes Metab Res Rev 28:2011;123–131.
98. Sapienza C., Lee J., Powell J., Erinle O., Yafai F., Reichert J., Siraj E.S., Madaio M.. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy.
Epigenetics 6:2011;20–28.
99. Pirola L., Balcerczyk A., Tothill R.W., Haviv I., Kaspi A., Lunke S., Ziemann M., Karagiannis T., Tonna S., Kowalczyk A., Beresford-Smith B., Macintyre G., Kelong M., Hongyu Z., Zhu J., El-Osta A.. Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells.
Genome Res 21:2011;1601–1615.
100. Chakrabarti S.K., Francis J., Ziesmann S.M., Garmey J.C., Mirmira R.G.. Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells.
J Biol Chem 278:2003;23617–23623.
101. Francis J., Babu D.A., Deering T.G., Chakrabarti S.K., Garmey J.C., Evans-Molina C., Taylor D.G., Mirmira R.G.. Role of chromatin accessibility in the occupancy and transcription of the insulin gene by the pancreatic and duodenal homeobox factor 1.
Mol Endocrinol 20:2006;3133–3145.
102. Francis J., Chakrabarti S.K., Garmey J.C., Mirmira R.G.. Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription.
J Biol Chem 280:2005;36244–36253.
104. Musri M.M., Carmona M.C., Hanzu F.A., Kaliman P., Gomis R., Parrizas M.. Histone demethylase LSD1 regulates adipogenesis.
J Biol Chem 285:2010;30034–30041.
106. Stitzel M.L., Sethupathy P., Pearson D.S., Chines P.S., Song L., Erdos M.R., Welch R., Parker S.C., Boyle A.P., Scott L.J., Margulies E.H., Boehnke M., Furey T.S., Crawford G.E., Collins F.S.. Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci.
Cell Metab 12:2010;443–455.
107. Gray S.G., De Meyts P.. Role of histone and transcription factor acetylation in diabetes pathogenesis.
Diabetes Metab Res Rev 21:2005;416–433.
108. Haigis M.C., Sinclair D.A.. Mammalian sirtuins: biological insights and disease relevance.
Annu Rev Pathol 5:2010;253–295.
109. Nakagawa T., Segal M., Croker B., Johnson R.J.. A breakthrough in diabetic nephropathy: the role of endothelial dysfunction.
Nephrol Dial Transplant 22:2007;2775–2777.
110. Wang Y., Harris D.C.. Macrophages in renal disease.
J Am Soc Nephrol 22:2011;21–27.
111. Matouk C.C., Marsden P.A.. Epigenetic regulation of vascular endothelial gene expression.
Circ Res 102:2008;873–887.
112. Reddy M.A., Natarajan R.. Epigenetics in diabetic kidney disease.
J Am Soc Nephrol 22:2011;2182–2185.
113. Fish J.E., Matouk C.C., Rachlis A., Lin S., Tai S.C., D'Abreo C., Marsden P.A.. The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code.
J Biol Chem 280:2005;24824–24838.
114. Chen W., Bacanamwo M., Harrison D.G.. Activation of p300 histone acetyltransferase activity is an early endothelial response to laminar shear stress and is essential for stimulation of endothelial nitric-oxide synthase mRNA transcription.
J Biol Chem 283:2008;16293–16298.
115. Nangaku M.. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure.
J Am Soc Nephrol 17:2006;17–25.
116. Fish J.E., Yan M.S., Matouk C.C. St, Bernard R., Ho J.J., Gavryushova A., Srivastava D., Marsden P.A.. Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones.
J Biol Chem 285:2010;810–826.
117. Takeuch O., Akira S.. Epigenetic control of macrophage polarization.
Eur J Immunol 41:2011;2490–2493.
118. De Santa F., Totaro M.G., Prosperini E., Notarbartolo S., Testa G., Natoli G.. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing.
Cell 130:2007;1083–1094.
119. Satoh T., Takeuchi O., Vandenbon A., Yasuda K., Tanaka Y., Kumagai Y., Miyake T., Matsushita K., Okazaki T., Saitoh T., Honma K., Matsuyama T., Yui K., Tsujimura T., Standley D.M., Nakanishi K., Nakai K., Akira S.. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection.
Nat immunol 11:2010;936–944.
120. Villagra A., Cheng F., Wang H.W., Suarez I., Glozak M., Maurin M., Nguyen D., Wright K.L., Atadja P.W., Bhalla K., Pinilla-Ibarz J., Seto E., Sotomayor E.M.. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance.
Nat Immunol 10:2009;92–100.
121. Miao F., Gonzalo I.G., Lanting L., Natarajan R.. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions.
J Biol Chem 279:2004;18091–18097.
122. Li Y., Reddy M.A., Miao F., Shanmugam N., Yee J.K., Hawkins D., Ren B., Natarajan R.. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation.
J Biol Chem 283:2008;26771–26781.
123. Miao F., Wu X., Zhang L., Yuan Y.C., Riggs A.D., Natarajan R.. Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes.
J Biol Chem 282:2007;13854–13863.
124. Miao F., Smith D.D., Zhang L., Min A., Feng W., Natarajan R.. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes.
Diabetes 57:2008;3189–3198.
125. Miao F., Chen Z., Zhang L., Liu Z., Wu X., Yuan Y.C., Natarajan R.. Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes.
J Biol Chem 287:2012: . [125 143].;16335–16345.
126. Gaikwad A.B., Gupta J., Tikoo K.. Epigenetic changes and alteration of Fbn1 and Col3A1 gene expression under hyperglycaemic and hyperinsulinaemic conditions.
Biochem J 432:2010;333–341.
127. Sayyed S.G., Gaikwad A.B., Lichtnekert J., Kulkarni O., Eulberg D., Klussmann S., Tikoo K., Anders H.J.. Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10.
Nephrol Dial Transplant 25:2010;1811–1817.
128. Noh H., Oh E.Y., Seo J.Y., Yu M.R., Kim Y.O., Ha H., Lee H.B.. Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury.
Am J Physiol Renal Physiol 297:2009;F729–F739.
129. Sun G., Reddy M.A., Yuan H., Lanting L., Kato M., Natarajan R.. Epigenetic histone methylation modulates fibrotic gene expression.
J Am Soc Nephrol 21:2010;2069–2080.
130. Zhang W., Xia X., Reisenauer M.R., Hemenway C.S., Kone B.C.. Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCalpha in an aldosterone-sensitive manner.
J Biol Chem 281:2006;18059–18068.
131. Zhang W., Xia X., Reisenauer M.R., Rieg T., Lang F., Kuhl D., Vallon V., Kone B.C.. Aldosterone-induced Sgk1 relieves Dot1a-Af9-mediated transcriptional repression of epithelial Na+ channel alpha.
J Clin Invest 117:2007;773–783.
132. Naito M., Zager R.A., Bomsztyk K.. BRG1 increases transcription of proinflammatory genes in renal ischemia.
J Am Soc Nephrol 20:2009;1787–1796.
133. Abrass C.K., Hansen K., Popov V., Denisenko O.. Alterations in chromatin are associated with increases in collagen III expression in aging nephropathy.
Am J Physiol Renal Physiol 300:2011;F531–F539.
134. Lefevre G.M., Patel S.R., Kim D., Tessarollo L., Dressler G.R.. Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype.
PLoS Genet 6:2010;e1001142
135. Dressler G.R.. Epigenetics, development, and the kidney.
J Am Soc Nephrol 19:2008;2060–2067.
138. Cowley A.W. Jr, Nadeau J.H., Baccarelli A., Berecek K., Fornage M., Gibbons G.H., Harrison D.G., Liang M., Nathanielsz P.W., O'Connor D.T., Ordovas J., Peng W., Soares M.B., Szyf M., Tolunay H.E., Wood K.C., Zhao K., Galis Z.S.. Report of the national heart, lung, and blood institute working group on epigenetics and hypertension.
Hypertension 59:2012;899–905.
139. Schones D.E., Zhao K.. Genome-wide approaches to studying chromatin modifications.
Nat Rev Genet 9:2008;179–191.
140. Maunakea A.K., Chepelev I., Zhao K.. Epigenome mapping in normal and disease States.
Circ Res 107:2010;327–339.
141. Metzker M.L.. Sequencing technologies—the next generation.
Nat Rev Genet 11:2010;31–46.
142. Mohn F., Weber M., Schübeler D., Roloff T.C.. Methylated DNA immunoprecipitation (MeDIP).
Methods Mol Biol 507:2009;55–64.
143. Rauch T.A., Pfeifer G.P.. DNA methylation profiling using the methylated-CpG island recovery assay (MIRA).
Methods 52:2010;213–217.
144. Laird P.W.. Principles and challenges of genomewide DNA methylation analysis.
Nat Rev Genet 11:2010;191–203.
146. Pons D., de Vries F.R., van den Elsen P.J., Heijmans B.T., Quax P.H., Jukema J.W.. Epigenetic histone acetylation modifiers in vascular remodelling: new targets for therapy in cardiovascular disease.
Eur Heart J 30:2009;266–277.
147. Natarajan R.. Drugs targeting epigenetic histone acetylation in vascular smooth muscle cells for restenosis and atherosclerosis.
Arterioscler Thromb Vasc Biol 31:2011;725–727.
148. Yun J.M., Jialal I., Devaraj S.. Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin.
J Nutr Biochem 22:2011: . [148].;450–458.
149. Chiu J., Khan Z.A., Farhangkhoee H., Chakrabarti S.. Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-kappaB.
Nutrition 25:2009;964–972.