1. Jain AK, Blake P, Cordy P, Garg AX. 2012;Global trends in rates of peritoneal dialysis.
J Am Soc Nephrol 23:533–544.
2. Bargman JM. 2012;Advances in peritoneal dialysis: a review.
Semin Dial 25:545–549.
3. Davies SJ. 2013;Peritoneal dialysis--current status and future challenges.
Nat Rev Nephrol 9:399–408.
4. Pletinck A, Vanholder R, Veys N, Van Biesen W. 2012;Protecting the peritoneal membrane: factors beyond peritoneal dialysis solutions.
Nat Rev Nephrol 8:542–550.
5. Williams JD, Craig KJ, von Ruhland C, Topley N, Williams GT. Biopsy Registry Study Group. 2003;The natural course of peritoneal membrane biology during peritoneal dialysis.
Kidney Int Suppl (88):S43–S49.
6. Williams JD, Craig KJ, Topley N, et al. Peritoneal Biopsy Study Group. 2002;Morphologic changes in the peritoneal membrane of patients with renal disease.
J Am Soc Nephrol 13:470–479.
7. Yáñez-Mó M, Lara-Pezzi E, Selgas R, et al. 2003;Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells.
N Engl J Med 348:403–413.
8. Yang AH, Chen JY, Lin JK. 2003;Myofibroblastic conversion of mesothelial cells.
Kidney Int 63:1530–1539.
9. Patel P, Sekiguchi Y, Oh KH, Patterson SE, Kolb MR, Margetts PJ. 2010;Smad3-dependent and -independent pathways are involved in peritoneal membrane injury.
Kidney Int 77:319–328.
10. Margetts PJ, Bonniaud P. 2003;Basic mechanisms and clinical implications of peritoneal fibrosis.
Perit Dial Int 23:530–541.
11. Aroeira LS, Aguilera A, Sánchez-Tomero JA, et al. 2007;Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions.
J Am Soc Nephrol 18:2004–2013.
12. López-Cabrera M. 2014;Mesenchymal conversion of mesothelial cells is a key event in the pathophysiology of the peritoneum during peritoneal dialysis.
Adv Med 2014:473134.
13. González-Mateo GT, Aroeira LS, López-Cabrera M, Ruiz-Ortega M, Ortiz A, Selgas R. 2012;Pharmacological modulation of peritoneal injury induced by dialysis fluids: is it an option?
Nephrol Dial Transplant 27:478–481.
14. Mutsaers SE, Wilkosz S. 2007;Structure and function of mesothelial cells.
Cancer Treat Res 134:1–19.
15. Yung S, Chan TM. 2007;Mesothelial cells.
Perit Dial Int 27(Suppl 2):S110–S115.
16. Devuyst O, Margetts PJ, Topley N. 2010;The pathophysiology of the peritoneal membrane.
J Am Soc Nephrol 21:1077–1085.
17. Schilte MN, Celie JW, Wee PM, Beelen RH, van den Born J. 2009;Factors contributing to peritoneal tissue remodeling in peritoneal dialysis.
Perit Dial Int 29:605–617.
18. Kalluri R, Neilson EG. 2003;Epithelial-mesenchymal transition and its implications for fibrosis.
J Clin Invest 112:1776–1784.
19. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. 2009;Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease.
J Clin Invest 119:1438–1449.
20. Thiery JP, Acloque H, Huang RY, Nieto MA. 2009;Epithelial-mesenchymal transitions in development and disease.
Cell 139:871–890.
21. Jang YH, Shin HS, Sun Choi H, et al. 2013;Effects of dexamethasone on the TGF-β1-induced epithelial-to-mesenchymal transition in human peritoneal mesothelial cells.
Lab Invest 93:194–206.
22. Ito T, Yorioka N, Yamamoto M, Kataoka K, Yamakido M. 2000;Effect of glucose on intercellular junctions of cultured human peritoneal mesothelial cells.
J Am Soc Nephrol 11:1969–1979.
23. Reyes JL, Molina-Jijón E, Rodríguez-Muñoz R, Bautista-García P, Debray-García Y, Namorado Mdel C. 2013;Tight junction proteins and oxidative stress in heavy metals-induced nephrotoxicity.
Biomed Res Int 2013:730789.
24. Nieto MA. 2013;Epithelial plasticity: a common theme in embryonic and cancer cells.
Science 342:1234850.
25. Yu MA, Shin KS, Kim JH, et al. 2009;HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium.
J Am Soc Nephrol 20:567–581.
26. Yu M, Shin HS, Lee HK, et al. 2015;Effect of aldosterone on epithelial-to-mesenchymal transition of human peritoneal mesothelial cells.
Kidney Res Clin Pract 34:83–92.
27. Shin HS, Ko J, Kim DA, et al. 2017;Metformin ameliorates the phenotype transition of peritoneal mesothelial cells and peritoneal fibrosis via a modulation of oxidative stress.
Sci Rep 7:5690.
28. Margetts PJ, Bonniaud P, Liu L, et al. 2005;Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum.
J Am Soc Nephrol 16:425–436.
29. Del Peso G, Jiménez-Heffernan JA, Bajo MA, et al. 2008;Epithelial-to-mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transport.
Kidney Int Suppl (108):S26–S33.
30. Jiménez-Heffernan JA, Aguilera A, Aroeira LS, et al. 2004;Immunohistochemical characterization of fibroblast subpopulations in normal peritoneal tissue and in peritoneal dialysis-induced fibrosis.
Virchows Arch 444:247–256.
31. Do JY, Kim YL, Park JW, et al. 2005;The effect of low glucose degradation product dialysis solution on epithelial-to-mesenchymal transition in continuous ambulatory peritoneal dialysis patients.
Perit Dial Int 25(Suppl 3):S22–S25.
32. Aroeira LS, Aguilera A, Selgas R, et al. 2005;Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor.
Am J Kidney Dis 46:938–948.
33. Oh EJ, Ryu HM, Choi SY, et al. 2010;Impact of low glucose degradation product bicarbonate/lactate-buffered dialysis solution on the epithelial-mesenchymal transition of peritoneum.
Am J Nephrol 31:58–67.
34. Lan HY, Chung AC. 2012;TGF-β/Smad signaling in kidney disease.
Semin Nephrol 32:236–243.
35. Samarakoon R, Overstreet JM, Higgins PJ. 2013;TGF-β signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities.
Cell Signal 25:264–268.
36. Zhou Q, Yang M, Lan H, Yu X. 2013;miR-30a negatively regulates TGF-β1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1.
Am J Pathol 183:808–819.
37. Hirahara I, Ishibashi Y, Kaname S, Kusano E, Fujita T. 2009;Methylglyoxal induces peritoneal thickening by mesenchymal-like mesothelial cells in rats.
Nephrol Dial Transplant 24:437–447.
38. Bajo MA, Pérez-Lozano ML, Albar-Vizcaino P, et al. 2011;Low-GDP peritoneal dialysis fluid ('balance') has less impact in vitro and ex vivo on epithelial-to-mesenchymal transition (EMT) of mesothelial cells than a standard fluid.
Nephrol Dial Transplant 26:282–291.
39. Lei P, Jiang Z, Zhu H, Li X, Su N, Yu X. 2012;Poly(ADP-ribose) polymerase-1 in high glucose-induced epithelial-mesenchymal transition during peritoneal fibrosis.
Int J Mol Med 29:472–478.
40. Li X, Liu H, Sun L, et al. 2019;MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor.
J Cell Mol Med 23:2372–2383.
41. Yu M, Shi J, Sheng M, et al. 2018;Astragalus inhibits epithelial-to-mesenchymal transition of peritoneal mesothelial cells by down-regulating β-catenin.
Cell Physiol Biochem 51:2794–2813.
42. Lee SH, Kang HY, Kim KS, et al. 2012;The monocyte chemoattractant protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related epithelial-mesenchymal transition of peritoneal mesothelial cells.
Lab Invest 92:1698–1711.
43. Ertilav M, Timur O, Hür E, et al. 2011;What does the dialysate level of matrix metalloproteinase 2 tell us?
Adv Perit Dial 27:6–10.
44. Hao N, Chiou TT, Wu CH, et al. 2019;Longitudinal changes of PAI-1, MMP-2, and VEGF in peritoneal effluents and their associations with peritoneal small-solute transfer rate in new peritoneal dialysis patients.
Biomed Res Int 2019:2152584.
45. Margetts PJ, Oh KH, Kolb M. 2005;Transforming growth factor-beta: importance in long-term peritoneal membrane changes.
Perit Dial Int 25(Suppl 3):S15–S17.
46. Strippoli R, Benedicto I, Pérez Lozano ML, Cerezo A, López-Cabrera M, del Pozo MA. 2008;Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/Snail1 pathway.
Dis Model Mech 1:264–274.
47. Liu Q, Mao H, Nie J, et al. 2008;Transforming growth factor {beta}1 induces epithelial-mesenchymal transition by activating the JNK-Smad3 pathway in rat peritoneal mesothelial cells.
Perit Dial Int 28(Suppl 3):S88–S95.
48. Liu Q, Zhang Y, Mao H, et al. 2012;A crosstalk between the Smad and JNK signaling in the TGF-β-induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells.
PLoS One 7:e32009.
49. Guo Y, Sun L, Xiao L, et al. 2017;Aberrant Wnt/beta-catenin pathway activation in dialysate-induced peritoneal fibrosis.
Front Pharmacol 8:774.
50. Shin HS, Ryu ES, Oh ES, Kang DH. 2015;Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells.
Lab Invest 95:1157–1173.
51. Ko J, Kang HJ, Kim DA, et al. 2019;Paricalcitol attenuates TGF-β1-induced phenotype transition of human peritoneal mesothelial cells (HPMCs) via modulation of oxidative stress and NLRP3 inflammasome.
FASEB J 33:3035–3050.
52. Li Y, Wang L, Pappan L, Galliher-Beckley A, Shi J. 2012;IL-1β promotes stemness and invasiveness of colon cancer cells through Zeb1 activation.
Mol Cancer 11:87.
53. Liang H, Xu F, Zhang T, et al. 2018;Inhibition of IL-18 reduces renal fibrosis after ischemia-reperfusion.
Biomed Pharmacother 106:879–889.
54. Guo J, Gu N, Chen J, et al. 2013;Neutralization of interleukin-1 beta attenuates silica-induced lung inflammation and fibrosis in C57BL/6 mice.
Arch Toxicol 87:1963–1973.
55. Retana C, Sanchez E, Perez-Lopez A, et al. 2015;Alterations of intercellular junctions in peritoneal mesothelial cells from patients undergoing dialysis: effect of retinoic acid.
Perit Dial Int 35:275–287.
56. Sandoval P, Loureiro J, González-Mateo G, et al. 2010;PPAR-γ agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage.
Lab Invest 90:1517–1532.
57. Loureiro J, Sandoval P, del Peso G, et al. 2013;Tamoxifen ameliorates peritoneal membrane damage by blocking mesothelial to mesenchymal transition in peritoneal dialysis.
PLoS One 8:e61165.
58. Liu J, Zeng L, Zhao Y, Zhu B, Ren W, Wu C. 2014;Selenium suppresses lipopolysaccharide-induced fibrosis in peritoneal mesothelial cells through inhibition of epithelial-to-mesenchymal transition.
Biol Trace Elem Res 161:202–209.
59. Yang Y, Liu K, Liang Y, Chen Y, Chen Y, Gong Y. 2015;Histone acetyltransferase inhibitor C646 reverses epithelial to mesenchymal transition of human peritoneal mesothelial cells via blocking TGF-β1/Smad3 signaling pathway in vitro.
Int J Clin Exp Pathol 8:2746–2754.
60. Zhao JL, Guo MZ, Zhu JJ, Zhang T, Min DY. 2019;Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1).
Cell Mol Biol Lett 24:32.
61. Lupinacci S, Perri A, Toteda G, et al. 2019;Olive leaf extract counteracts epithelial to mesenchymal transition process induced by peritoneal dialysis, through the inhibition of TGFβ1 signaling.
Cell Biol Toxicol 35:95–109.
62. Sun Y, Zhu F, Yu X, et al. 2009;Treatment of established peritoneal fibrosis by gene transfer of Smad7 in a rat model of peritoneal dialysis.
Am J Nephrol 30:84–94.
63. Kang SH, Kim SW, Kim KJ, et al. 2019;Effects of tranilast on the epithelial-to-mesenchymal transition in peritoneal mesothelial cells.
Kidney Res Clin Pract 38:472–480.
64. Cheng S, Lu Y, Li Y, Gao L, Shen H, Song K. 2018;Hydrogen sulfide inhibits epithelial-mesenchymal transition in peritoneal mesothelial cells.
Sci Rep 8:5863.
65. Aroeira LS, Lara-Pezzi E, Loureiro J, et al. 2009;Cyclooxygenase-2 mediates dialysate-induced alterations of the peritoneal membrane.
J Am Soc Nephrol 20:582–592.
66. Fabbrini P, Schilte MN, Zareie M, et al. 2009;Celecoxib treatment reduces peritoneal fibrosis and angiogenesis and prevents ultrafiltration failure in experimental peritoneal dialysis.
Nephrol Dial Transplant 24:3669–3676.
67. Duman S, Günal AI, Sen S, et al. 2001;Does enalapril prevent peritoneal fibrosis induced by hypertonic (3.86%) peritoneal dialysis solution?
Perit Dial Int 21:219–224.
68. De Vriese AS, Mortier S, Cornelissen M, et al. 2002;The effects of heparin administration in an animal model of chronic peritoneal dialysate exposure.
Perit Dial Int 22:566–572.
69. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. 2002;Evidence that fibroblasts derive from epithelium during tissue fibrosis.
J Clin Invest 110:341–350.
70. Carew RM, Wang B, Kantharidis P. 2012;The role of EMT in renal fibrosis.
Cell Tissue Res 347:103–116.
71. Hills CE, Squires PE. 2011;The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy.
Cytokine Growth Factor Rev 22:131–139.
72. Fragiadaki M, Mason RM. 2011;Epithelial-mesenchymal transition in renal fibrosis - evidence for and against.
Int J Exp Pathol 92:143–150.
73. Quaggin SE, Kapus A. 2011;Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition.
Kidney Int 80:41–50.
74. Liu Y. 2010;New insights into epithelial-mesenchymal transition in kidney fibrosis.
J Am Soc Nephrol 21:212–222.
75. Lee DB, Huang E, Ward HJ. 2006;Tight junction biology and kidney dysfunction.
Am J Physiol Renal Physiol 290:F20–F34.
76. Roberts AB, Tian F, Byfield SD, et al. 2006;Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis.
Cytokine Growth Factor Rev 17:19–27.
77. Kriz W, Kaissling B, Le Hir M. 2011;Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy?
J Clin Invest 121:468–474.
78. Chen YT, Chang YT, Pan SY, et al. 2014;Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury.
J Am Soc Nephrol 25:2847–2858.