1. Grams ME, Sang Y, Ballew SH, et al. Predicting timing of clinical outcomes in patients with chronic kidney disease and severely decreased glomerular filtration rate.
Kidney Int 2018;93:1442–1451.
2. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization.
N Engl J Med 2004;351:1296–1305.
3. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis.
Kidney Int 2012;81:442–448.
4. Hsu RK, Hsu CY. The role of acute kidney injury in chronic kidney disease.
Semin Nephrol 2016;36:283–292.
5. Okusa MD, Rosin DL, Tracey KJ. Targeting neural reflex circuits in immunity to treat kidney disease.
Nat Rev Nephrol 2017;13:669–680.
6. Kanagy NL. Alpha(2)-adrenergic receptor signalling in hypertension.
Clin Sci (Lond) 2005;109:431–437.
7. Small KM, Mialet-Perez J, Seman CA, Theiss CT, Brown KM, Liggett SB. Polymorphisms of cardiac presynaptic alpha2C adrenergic receptors: diverse intragenic variability with haplotype-specific functional effects.
Proc Natl Acad Sci U S A 2004;101:13020–13025.
8. MacDonald E, Kobilka BK, Scheinin M. Gene targeting--homing in on alpha 2-adrenoceptor-subtype function.
Trends Pharmacol Sci 1997;18:211–219.
9. Kable JW, Murrin LC, Bylund DB. In vivo gene modification elucidates subtype-specific functions of alpha(2)-adrenergic receptors.
J Pharmacol Exp Ther 2000;293:1–7.
10. Hein L. Transgenic models of alpha 2-adrenergic receptor subtype function.
Rev Physiol Biochem Pharmacol 2001;142:161–185.
11. Philipp M, Hein L. Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes.
Pharmacol Ther 2004;101:65–74.
12. Ferguson M, Ryan GB, Bell C. Localization of sympathetic and sensory neurons innervating the rat kidney.
J Auton Nerv Syst 1986;16:279–288.
13. DiBona GF. Physiology in perspective: The Wisdom of the Body. Neural control of the kidney.
Am J Physiol Regul Integr Comp Physiol 2005;289:R633–R641.
14. Converse RL Jr, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure.
N Engl J Med 1992;327:1912–1918.
15. Veelken R, Vogel EM, Hilgers K, et al. Autonomic renal denervation ameliorates experimental glomerulonephritis.
J Am Soc Nephrol 2008;19:1371–1378.
16. Veelken R, Schmieder RE. Renal denervation--implications for chronic kidney disease.
Nat Rev Nephrol 2014;10:305–313.
17. Ma MC, Huang HS, Chen CF. Impaired renal sensory responses after unilateral ureteral obstruction in the rat.
J Am Soc Nephrol 2002;13:1008–1016.
18. Ma MC, Huang HS, Wu MS, Chien CT, Chen CF. Impaired renal sensory responses after renal ischemia in the rat.
J Am Soc Nephrol 2002;13:1872–1883.
19. Johns EJ, Kopp UC, DiBona GF. Neural control of renal function.
Compr Physiol 2011;1:731–767.
20. Mulder J, Hökfelt T, Knuepfer MM, Kopp UC. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats.
Am J Physiol Regul Integr Comp Physiol 2013;304:R675–R682.
21. Clayton SC, Haack KK, Zucker IH. Renal denervation modulates angiotensin receptor expression in the renal cortex of rabbits with chronic heart failure.
Am J Physiol Renal Physiol 2011;300:F31–F39.
22. Wyatt CM, Textor SC. Emerging evidence on renal denervation for the treatment of hypertension.
Kidney Int 2018;94:644–646.
23. Mahfoud F, Schlaich M, Böhm M, Esler M, Lüscher TF. Catheter-based renal denervation: the next chapter begins.
Eur Heart J 2018;39:4144–4149.
24. Bhatt DL, Bakris GL. Renal denervation for resistant hypertension.
N Engl J Med 2014;371:184.
25. Azizi M, Schmieder RE, Mahfoud F, et al. RADIANCE-HTN Investigators. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multi-centre, international, single-blind, randomised, sham-controlled trial.
Lancet 2018;391:2335–2345.
26. Umemura S, Marver D, Smyth DD, Pettinger WA. Alpha2-adrenoceptors and cellular cAMP levels in single nephron segments from the rat.
Am J Physiol 1985;249:F28–F33.
27. Kim J, Padanilam BJ. Renal nerves drive interstitial fibrogenesis in obstructive nephropathy.
J Am Soc Nephrol 2013;24:229–242.
28. Kim J, Padanilam BJ. Renal denervation prevents long-term sequelae of ischemic renal injury.
Kidney Int 2015;87:350–358.
29. Kneer NM, Wagner MJ, Lardy HA. Regulation by calcium of hormonal effects on gluconeogenesis.
J Biol Chem 1979;254:12160–12168.
30. Dartt DA. Physiology of tear production. In: Lemp MA, Marquardt R,
The dry eye: a comprehensive guide. Berlin: Springer-Verlag; Berlin Heidelberg: GmBH; 1992. p. 65–99.
31. Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation.
Hypertension 2003;42:474–480.
32. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability.
Front Psychol 2014;5:1040.
33. Glowinski J, Baldessarini RJ. Metabolism of norepinephrine in the central nervous system.
Pharmacol Rev 1966;18:1201–1238.
34. Liu Y. Cellular and molecular mechanisms of renal fibrosis.
Nat Rev Nephrol 2011;7:684–696.
35. Padro CJ, Sanders VM. Neuroendocrine regulation of inflammation.
Semin Immunol 2014;26:357–368.
36. Spengler RN, Chensue SW, Giacherio DA, Blenk N, Kunkel SL. Endogenous norepinephrine regulates tumor necrosis factor-alpha production from macrophages in vitro.
J Immunol 1994;152:3024–3031.
37. Flierl MA, Rittirsch D, Nadeau BA, et al. Phagocyte-derived catecholamines enhance acute inflammatory injury.
Nature 2007;449:721–725.
38. Flierl MA, Rittirsch D, Nadeau BA, et al. Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response.
PLoS One 2009;4:e4414.
39. Szelényi J, Kiss JP, Vizi ES. Differential involvement of sympathetic nervous system and immune system in the modulation of TNF-alpha production by alpha2- and beta-adrenoceptors in mice.
J Neuroimmunol 2000;103:34–40.
40. Xiu F, Stanojcic M, Jeschke MG. Norepinephrine inhibits macrophage migration by decreasing CCR2 expression.
PLoS One 2013;8:e69167.
41. Swanson MA, Lee WT, Sanders VM. IFN-gamma production by Th1 cells generated from naive CD4+ T cells exposed to norepinephrine.
J Immunol 2001;166:232–240.
42. Li Z, Oben JA, Yang S, et al. Norepinephrine regulates hepatic innate immune system in leptin-deficient mice with nonalcoholic steatohepatitis.
Hepatology 2004;40:434–441.
43. Vida G, Peña G, Kanashiro A, et al. β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system.
FASEB J 2011;25:4476–4485.
44. Guereschi MG, Araujo LP, Maricato JT, et al. Beta2-adrenergic receptor signaling in CD4+ Foxp3+ regulatory T cells enhances their suppressive function in a PKA-dependent manner.
Eur J Immunol 2013;43:1001–1012.
45. Kasprowicz DJ, Kohm AP, Berton MT, Chruscinski AJ, Sharpe A, Sanders VM. Stimulation of the B cell receptor, CD86 (B7-2), and the beta 2-adrenergic receptor intrinsically modulates the level of IgG1 and IgE produced per B cell.
J Immunol 2000;165:680–690.
46. Kohm AP, Sanders VM. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo.
Pharmacol Rev 2001;53:487–525.
47. Sanders VM. The beta2-adrenergic receptor on T and B lymphocytes: do we understand it yet?
Brain Behav Immun 2012;26:195–200.
48. Vannella KM, Wynn TA. Mechanisms of organ injury and repair by macrophages.
Ann Rev Physiol 2017;79:593–617.
49. Burne MJ, Elghandour A, Haq M, et al. IL-1 and TNF independent pathways mediate ICAM-1/VCAM-1 up-regulation in ischemia reperfusion injury.
J Leukoc Biol 2001;70:192–198.
50. Docherty NG, O’Sullivan OE, Healy DA, Fitzpatrick JM, Watson RW. Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction.
Am J Physiol Renal Physiol 2006;290:F4–F13.
51. Daemen MA, van’t Veer C, Denecker G, et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation.
J Clin Invest 1999;104:541–549.
52. Madrigal JL, Feinstein DL, Dello Russo C. Norepinephrine protects cortical neurons against microglial-induced cell death.
J Neurosci Res 2005;81:390–396.
53. Schlachetzki JC, Fiebich BL, Haake E, et al. Norepinephrine enhances the LPS-induced expression of COX-2 and secretion of PGE2 in primary rat microglia.
J Neuroinflammation 2010;7:2.
54. Fu YC, Chi CS, Yin SC, Hwang B, Chiu YT, Hsu SL. Norepinephrine induces apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species-TNF alpha-caspase signaling pathway.
Cardiovasc Res 2004;62:558–567.
55. Fu YC, Chi CS, Yin SC, Hwang B, Chiu YT, Hsu SL. Norepinephrine induces apoptosis in neonatal rat endothelial cells via down-regulation of Bcl-2 and activation of beta-adrenergic and caspase-2 pathways.
Cardiovasc Res 2004;61:143–151.
56. Cronin RE, Erickson AM, de Torrente A, McDonald KM, Schrier RW. Norepinephrine-induced acute renal failure: a reversible ischemic model of acute renal failure.
Kidney Int 1978;14:187–190.
57. Bulger RE, Burke TJ, Cronin RE, Schrier RW, Dobyan DC. Morphology of norepinephrine-induced acute renal failure in the dog.
Anat Rec 1986;214:341–347.
58. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury.
Nat Med 2010;16:535–543.
59. Lovisa S, LeBleu VS, Tampe B, et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis.
Nat Med 2015;21:998–1009.
60. Canaud G, Bonventre JV. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury.
Nephrol Dial Transplant 2015;30:575–583.
61. Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts.
Cytokine Growth Factor Rev 1997;8:171–179.
62. Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis.
Growth Factors 2011;29:196–202.
63. Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics.
Kidney Int 2006;69:213–217.
64. LeBleu VS, Taduri G, O’Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis.
Nat Med 2013;19:1047–1053.
65. Buchtler S, Grill A, Hofmarksrichter S, et al. Cellular origin and functional relevance of collagen I production in the kidney.
J Am Soc Nephrol 2018;29:1859–1873.
66. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention.
J Am Soc Nephrol 2004;15:1–12.
67. Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy?
J Clin Invest 2011;121:468–474.
68. Amann K, Koch A, Hofstetter J, et al. Glomerulosclerosis and progression: effect of subantihypertensive doses of alpha and beta blockers.
Kidney Int 2001;60:1309–1323.
69. Amann K, Rump LC, Simonaviciene A, et al. Effects of low dose sympathetic inhibition on glomerulosclerosis and albuminuria in subtotally nephrectomized rats.
J Am Soc Nephrol 2000;11:1469–1478.
70. Trendelenburg AU, Klebroff W, Hein L, Starke K. A study of presynaptic alpha2-autoreceptors in alpha2A/D-, alpha2B- and alpha2C-adrenoceptor-deficient mice.
Naunyn Schmiedebergs Arch Pharmacol 2001;364:117–130.
71. Trendelenburg AU, Philipp M, Meyer A, Klebroff W, Hein L, Starke K. All three alpha2-adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons.
Naunyn Schmiedebergs Arch Pharmacol 2003;368:504–512.
72. Vonend O, Habbel S, Stegbauer J, Roth J, Hein L, Rump LC. α2A-Adrenoceptors regulate sympathetic transmitter release in mice kidneys.
Br J Pharmacol 2007;150:121–127.
73. Brede M, Philipp M, Knaus A, Muthig V, Hein L. Alpha2-adrenergic receptor subtypes - novel functions uncovered in gene-targeted mouse models.
Biol Cell 2004;96:343–348.
74. Brede M, Wiesmann F, Jahns R, Hadamek K, Arnolt C, Neubauer S, et al. Feedback inhibition of catecholamine release by two different alpha2-adrenoceptor subtypes prevents progression of heart failure.
Circulation 2002;106:2491–2496.
75. Solez K, Ideura T, Silvia CB, Hamilton B, Saito H. Clonidine after renal ischemia to lessen acute renal failure and microvascular damage.
Kidney Int 1980;18:309–322.
76. Tsutsui H, Sugiura T, Hayashi K, et al. Moxonidine prevents ischemia/reperfusion-induced renal injury in rats.
Eur J Pharmacol 2009;603:73–78.
77. Solez K, D’Agostini RJ, Stawowy L, et al. Beneficial effect of propranolol in a histologically appropriate model of post-ischemic acute renal failure.
Am J Pathol 1977;88:163–192.
78. Spengler RN, Allen RM, Remick DG, Strieter RM, Kunkel SL. Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor.
J Immunol 1990;145:1430–1434.
79. Wang RX, Limbird LE. Distribution of mRNA encoding three α2-adrenergic receptor subtypes in the developing mouse embryo suggests a Role for the α2A subtype in apoptosis.
Mol Pharmacol 1997;52:1071–1080.
80. Ghiani CA, Eisen AM, Yuan X, DePinho RA, McBain CJ, Gallo V. Neurotransmitter receptor activation triggers p27(Kip1 )and p21(CIP1) accumulation and G1 cell cycle arrest in oligodendrocyte progenitors.
Development 1999;126:1077–1090.
81. DiBona GF. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function.
Hypertension 2000;36:1083–1088.
82. Larsen R, Thorp A, Schlaich M. Regulation of the sympathetic nervous system by the kidney.
Curr Opin Nephrol Hypertens 2014;23:61–68.
83. Schlaich MP, Socratous F, Hennebry S, et al. Sympathetic activation in chronic renal failure.
J Am Soc Nephrol 2009;20:933–939.
84. Stegbauer J, Vonend O, Habbel S, et al. Angiotensin II modulates renal sympathetic neurotransmission through nitric oxide in AT2 receptor knockout mice.
J Hypertens 2005;23:1691–1698.
85. Hoch H, Stegbauer J, Potthoff SA, et al. Regulation of renal sympathetic neurotransmission by renal α(2A)-adrenoceptors is impaired in chronic renal failure.
Br J Pharmacol 2011;163:438–446.
86. Eriguchi M, Tsuruya K, Haruyama N, et al. Renal denervation has blood pressure-independent protective effects on kidney and heart in a rat model of chronic kidney disease.
Kidney Int 2015;87:116–127.