1. Wehrwein EA, Orer HS, Barman SM. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system.
Compr Physiol 2016;6:1239–1278.
2. Pavlov VA, Tracey KJ. Neural regulation of immunity: molecular mechanisms and clinical translation.
Nat Neurosci 2017;20:156–166.
3. Kawashima K, Fujii T, Moriwaki Y, Misawa H. Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function.
Life Sci 2012;91:1027–1032.
4. Inoue T, Abe C, Sung SS, et al. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes.
J Clin Invest 2016;126:1939–1952.
5. Abe C, Inoue T, Inglis MA, et al. C1 neurons mediate a stress-induced anti-inflammatory reflex in mice.
Nat Neurosci 2017;20:700–707.
6. Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S. Noradrenergic and peptidergic innervation of lymphoid tissue.
J Immunol 1985;135(2 Suppl):755S–765S.
7. Brodde OE, Engel G, Hoyer D, Bock KD, Weber F. The beta-adrenergic receptor in human lymphocytes: subclassification by the use of a new radio-ligand, (+/−)-125 Iodocy-anopindolol.
Life Sci 1981;29:2189–2198.
8. Bellinger DL, Millar BA, Perez S, et al. Sympathetic modulation of immunity: relevance to disease.
Cell Immunol 2008;252:27–56.
9. Ek M, Kurosawa M, Lundeberg T, Ericsson A. Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins.
J Neurosci 1998;18:9471–9479.
10. Hermann GE, Rogers RC. TNFalpha: a trigger of autonomic dysfunction.
Neuroscientist 2008;14:53–67.
11. Page AJ, O’Donnell TA, Blackshaw LA. P2X purinoceptor-induced sensitization of ferret vagal mechanoreceptors in oesophageal inflammation.
J Physiol 2000;523:403–411.
12. Brouns I, Adriaensen D, Burnstock G, Timmermans JP. Intraepithelial vagal sensory nerve terminals in rat pulmonary neuroepithelial bodies express P2X(3) receptors.
Am J Respir Cell Mol Biol 2000;23:52–61.
13. Niijima A, Hori T, Katafuchi T, Ichijo T. The effect of interleukin-1 beta on the efferent activity of the vagus nerve to the thymus.
J Auton Nerv Syst 1995;54:137–144.
14. Niijima A. The afferent discharges from sensors for interleukin 1 beta in the hepatoportal system in the anesthetized rat.
J Auton Nerv Syst 1996;61:287–291.
15. Steinberg BE, Silverman HA, Robbiati S, et al. Cytokine-specific neurograms in the sensory vagus nerve.
Bioelectron Med 2016;3:7–17.
16. Saeed RW, Varma S, Peng-Nemeroff T, et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation.
J Exp Med 2005;201:1113–1123.
17. Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin.
Nature 2000;405:458–462.
18. Wang H, Liao H, Ochani M, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis.
Nat Med 2004;10:1216–1221.
19. de Jonge WJ, van der Zanden EP, The FO, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway.
Nat Immunol 2005;6:844–851.
20. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation.
Nature 2003;421:384–388.
21. Huston JM, Ochani M, Rosas-Ballina M, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis.
J Exp Med 2006;203:1623–1628.
22. Bellinger DL, Lorton D, Hamill RW, Felten SY, Felten DL. Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation.
Brain Behav Immun 1993;7:191–204.
23. Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987–2007).
Brain Behav Immun 2007;21:736–745.
24. Rosas-Ballina M, Olofsson PS, Ochani M, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit.
Science 2011;334:98–101.
25. Vida G, Peña G, Kanashiro A, et al. β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system.
FASEB J 2011;25:4476–4485.
26. Matteoli G, Gomez-Pinilla PJ, Nemethova A, et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen.
Gut 2014;63:938–948.
27. Goverse G, Stakenborg M, Matteoli G. The intestinal cholinergic anti-inflammatory pathway.
J Physiol 2016;594:5771–5780.
28. Sun P, Zhou K, Wang S, et al. Involvement of MAPK/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation.
PLoS One 2013;8:e69424.
29. The FO, Boeckxstaens GE, Snoek SA, et al. Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice.
Gastroenterology 2007;133:1219–1228.
30. Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model.
Gastroenterology 2006;131:1122–1130.
31. McAllen RM, Cook AD, Khiew HW, Martelli D, Hamilton JA. The interface between cholinergic pathways and the immune system and its relevance to arthritis.
Arthritis Res Ther 2015;17:87.
32. Borovikova LV, Ivanova S, Nardi D, et al. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation.
Auton Neurosci 2000;85:141–147.
33. Zhang P, Han D, Tang T, Zhang X, Dai K. Inhibition of the development of collagen-induced arthritis in Wistar rats through vagus nerve suspension: a 3-month observation.
Inflamm Res 2008;57:322–328.
34. Levine YA, Koopman FA, Faltys M, et al. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis.
PLoS One 2014;9:e104530.
35. Wang L, Opland D, Tsai S, et al. Pten deletion in RIP-Cre neurons protects against type 2 diabetes by activating the anti-inflammatory reflex.
Nat Med 2014;20:484–492.
36. Carnevale D, Perrotta M, Pallante F, et al. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication.
Nat Commun 2016;7:13035.
37. Kinsey GR, Li L, Okusa MD. Inflammation in acute kidney injury.
Nephron Exp Nephrol 2008;109:e102–e107.
38. Rabb H, Griffin MD, McKay DB, et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps.
J Am Soc Nephrol 2016;27:371–379.
39. Cao Q, Harris DC, Wang Y. Macrophages in kidney injury, inflammation, and fibrosis.
Physiology (Bethesda) 2015;30:183–194.
40. Jang HR, Rabb H. Immune cells in experimental acute kidney injury.
Nat Rev Nephrol 2015;11:88–101.
41. Jang HR, Rabb H. The innate immune response in ischemic acute kidney injury.
Clin Immunol 2009;130:41–50.
42. Huen SC, Cantley LG. Macrophage-mediated injury and repair after ischemic kidney injury.
Pediatr Nephrol 2015;30:199–209.
43. Inoue T, Abe C, Kohro T, et al. Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney.
Kidney Int 2019;95:563–576.
44. Hoeger S, Fontana J, Jarczyk J, et al. Vagal stimulation in brain dead donor rats decreases chronic allograft nephropathy in recipients.
Nephrol Dial Transplant 2014;29:544–549.
45. Gigliotti JC, Huang L, Ye H, et al. Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway.
J Am Soc Nephrol 2013;24:1451–1460.
46. Gigliotti JC, Huang L, Bajwa A, et al. Ultrasound modulates the splenic neuroimmune axis in attenuating AKI.
J Am Soc Nephrol 2015;26:2470–2481.
47. Montgomery KL, Iyer SM, Christensen AJ, Deisseroth K, Delp SL. Beyond the brain: optogenetic control in the spinal cord and peripheral nervous system.
Sci Transl Med 2016;8:337rv5.
48. Nagel G, Ollig D, Fuhrmann M, et al. Channelrhodopsin-1: a light-gated proton channel in green algae.
Science 2002;296:2395–2398.
49. Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
Proc Natl Acad Sci U S A 2003;100:13940–13945.
50. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity.
Nat Neurosci 2005;8:1263–1268.
51. Deisseroth K, Feng G, Majewska AK, Miesenböck G, Ting A, Schnitzer MJ. Next-generation optical technologies for illuminating genetically targeted brain circuits.
J Neurosci 2006;26:10380–10386.
52. Han X, Boyden ES. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution.
PLoS One 2007;2:e299.
53. Deisseroth K. Optogenetics.
Nat Methods 2011;8:26–29.
54. Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD. Vagal sensory neuron subtypes that differentially control breathing.
Cell 2015;161:622–633.
55. Guyenet PG, Stornetta RL, Bochorishvili G, Depuy SD, Burke PG, Abbott SB. C1 neurons: the body’s EMTs.
Am J Physiol Regul Integr Comp Physiol 2013;305:R187–R204.
56. I’Anson H, Sundling LA, Roland SM, Ritter S. Immunotoxic destruction of distinct catecholaminergic neuron populations disrupts the reproductive response to glucoprivation in female rats.
Endocrinology 2003;144:4325–4331.
57. Füzesi T, Wittmann G, Liposits Z, Lechan RM, Fekete C. Contribution of noradrenergic and adrenergic cell groups of the brainstem and agouti-related protein-synthesizing neurons of the arcuate nucleus to neuropeptide-y innervation of corticotropin-releasing hormone neurons in hypothalamic paraventricular nucleus of the rat.
Endocrinology 2007;148:5442–5450.
58. Verberne AJ, Sartor DM. Rostroventrolateral medullary neurons modulate glucose homeostasis in the rat.
Am J Physiol Endocrinol Metab 2010;299:E802–E807.
59. Zhao Z, Wang L, Gao W, et al. A central catecholaminergic circuit controls blood glucose levels during stress.
Neuron 2017;95:138–152.
60. Madden CJ, Tupone D, Cano G, Morrison SF. α2 Adrenergic receptor-mediated inhibition of thermogenesis.
J Neurosci 2013;33:2017–2028.
61. Burke PG, Abbott SB, Coates MB, Viar KE, Stornetta RL, Guyenet PG. Optogenetic stimulation of adrenergic C1 neurons causes sleep state-dependent cardiorespiratory stimulation and arousal with sighs in rats.
Am J Respir Crit Care Med 2014;190:1301–1310.
62. Wenker IC, Abe C, Viar KE, Stornetta DS, Stornetta RL, Guyenet PG. Blood pressure regulation by the rostral ventrolateral medulla in conscious rats: effects of hypoxia, hypercapnia, baroreceptor denervation, and anesthesia.
J Neurosci 2017;37:4565–4583.
63. Li HY, Ericsson A, Sawchenko PE. Distinct mechanisms underlie activation of hypothalamic neurosecretory neurons and their medullary catecholaminergic afferents in categorically different stress paradigms.
Proc Natl Acad Sci U S A 1996;93:2359–2364.
64. Ben-Menachem E, Revesz D, Simon BJ, Silberstein S. Surgically implanted and non-invasive vagus nerve stimulation: a review of efficacy, safety and tolerability.
Eur J Neurol 2015;22:1260–1268.
65. Kox M, van Eijk LT, Verhaak T, et al. Transvenous vagus nerve stimulation does not modulate the innate immune response during experimental human endotoxemia: a randomized controlled study.
Arthritis Res Ther 2015;17:150.
66. Koopman FA, Chavan SS, Miljko S, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis.
Proc Natl Acad Sci U S A 2016;113:8284–8289.
67. Bonaz B, Sinniger V, Hoffmann D, et al. Chronic vagus nerve stimulation in Crohn’s disease: a 6-month follow-up pilot study.
Neurogastroenterol Motil 2016;28:948–953.
68. Silberstein SD, Mechtler LL, Kudrow DB, et al. Non-invasive vagus nerve stimulation for the acute treatment of cluster headache: findings from the randomized, double-blind, sham-controlled ACT1 study.
Headache 2016;56:1317–1332.
69. Aaronson ST, Carpenter LL, Conway CR, et al. Vagus nerve stimulation therapy randomized to different amounts of electrical charge for treatment-resistant depression: acute and chronic effects.
Brain Stimul 2013;6:631–640.
70. Kovacic K, Hainsworth K, Sood M, et al. Neurostimulation for abdominal pain-related functional gastrointestinal disorders in adolescents: a randomised, double-blind, sham-controlled trial.
Lancet Gastroenterol Hepatol 2017;2:727–737.
71. Aaronson ST, Sears P, Ruvuna F, et al. A 5-year observational study of patients with treatment-resistant depression treated with vagus nerve stimulation or treatment as usual: comparison of response, remission, and suicidality.
Am J Psychiatry 2017;174:640–648.
72. Tassorelli C, Grazzi L, de Tommaso M, et al. Noninvasive vagus nerve stimulation as acute therapy for migraine: the randomized PRESTO study.
Neurology 2018;91:e364–e373.
73. Gold MR, Van Veldhuisen DJ, Hauptman PJ, et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial.
J Am Coll Cardiol 2016;68:149–158.
74. Ay I, Nasser R, Simon B, Ay H. Transcutaneous cervical vagus nerve stimulation ameliorates acute ischemic injury in rats.
Brain Stimul 2016;9:166–173.
75. Lerman I, Hauger R, Sorkin L, et al. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: a randomized, blinded, healthy control pilot trial.
Neuromodulation 2016;19:283–290.
76. Susaki EA, Tainaka K, Perrin D, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis.
Cell 2014;157:726–739.
77. Hasegawa S, Susaki EA, Tanaka T, et al. Comprehensive three-dimensional analysis (CUBIC-kidney) visualizes abnormal renal sympathetic nerves after ischemia/reperfusion injury.
Kidney Int 2019;96:129–138.
78. Nagasu H, Satoh M, Kuwabara A, et al. Renal denervation reduces glomerular injury by suppressing NAD(P)H oxidase activity in Dahl salt-sensitive rats.
Nephrol Dial Transplant 2010;25:2889–2898.
79. Rafiq K, Noma T, Fujisawa Y, et al. Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aortic regurgitation.
Circulation 2012;125:1402–1413.
80. Kim J, Padanilam BJ. Renal denervation prevents long-term sequelae of ischemic renal injury.
Kidney Int 2015;87:350–358.
81. Kim J, Padanilam BJ. Renal nerves drive interstitial fibrogenesis in obstructive nephropathy.
J Am Soc Nephrol 2013;24:229–242.