1. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine.
Cell 2006;124:837-848.
2. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters.
Trends Mol Med 2015;21:109-117.
4. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography.
Nature 2012;486:222-227.
5. Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy.
J Exp Med 2019;216:20-40.
6. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.
J Lipid Res 2013;54:2325-2340.
7. Kim CH, Park J, Kim M. Gut microbiota-derived short-chain Fatty acids, T cells, and inflammation.
Immune Netw 2014;14:277-288.
8. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.
Gut Microbes 2016;7:189-200.
9. Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components.
Eur J Nutr 2018;57:1-24.
10. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease.
Nat Rev Immunol 2009;9:313-323.
11. Lotz M, Gütle D, Walther S, Ménard S, Bogdan C, Hornef MW. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells.
J Exp Med 2006;203:973-984.
12. Knauf F, Brewer JR, Flavell RA. Immunity, microbiota and kidney disease.
Nat Rev Nephrol 2019;15:263-274.
13. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease.
Nature 2016;535:75-84.
14. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation.
Cell 2014;157:121-141.
15. Sherman PM, Johnson-Henry KC, Yeung HP, Ngo PS, Goulet J, Tompkins TA. Probiotics reduce enterohemorrhagic Escherichia coli O157:H7- and enteropathogenic E. coli O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements.
Infect Immun 2005;73:5183-5188.
16. Arnal ME, Lallès JP. Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota.
Nutr Rev 2016;74:181-197.
17. Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners?
Gut 2020;69:2232-2243.
18. Bernet MF, Brassart D, Neeser JR, Servin AL. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria.
Gut 1994;35:483-489.
19. De Vadder F, Grasset E, Mannerås Holm L, et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks.
Pro Natl Acad Sci USA 2018;115:6458-6463.
20. Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora.
Kidney Int 2103;83:308-315.
21. Chaves LD, McSkimming DI, Bryniarski MA, et al. Chronic kidney disease, uremic milieu, and its effects on gut bacterial microbiota dysbiosis.
Am J Physiol Renal Physiol 2018;315:F487-F502.
22. Camerotto C, Cupisti A, D'Alessandro C, Muzio F, Gallieni M. Dietary fiber and gut microbiota in renal diets.
Nutrients 2019;11:2149.
23. Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota.
Microbiology (Reading) 2010;156:3216-3223.
24. Wu MJ, Chang CS, Cheng CH, et al. Colonic transit time in long-term dialysis patients.
Am J Kidney Dis 2004;44:322-327.
25. Goraya N, Wesson DE. Dietary management of chronic kidney disease: protein restriction and beyond.
Curr Opin Nephrol Hypertens 2012;21:635-640.
26. Gonçalves S, Pecoits-Filho R, Perreto S, et al. Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients.
Nephrol Dial Transplant 2006;21:2788-2794.
27. Jiang S, Xie S, Lv D, et al. Alteration of the gut microbiota in Chinese population with chronic kidney disease.
Sci Rep 2017;7:2870.
28. Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD.
Am J Nephrol 2014;39:230-237.
29. Magnusson M, Magnusson KE, Sundqvist T, Denneberg T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure.
Gut 1991;32:754-759.
30. McIntyre CW, Harrison LE, Eldehni MT, et al. Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease.
Clin J Am Soc Nephrol 2011;6:133-141.
31. Vaziri ND, Yuan J, Norris K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease.
Am J Nephrol 2013;37:1-6.
32. Yang J, Lim SY, Ko YS, et al. Intestinal barrier disruption and dysregulated mucosal immunity contribute to kidney fibrosis in chronic kidney disease.
Nephrol Dial Transplant 2019;34:419-428.
33. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions.
J Am Soc Nephrol 2014;25:657-670.
34. Raj DS, Carrero JJ, Shah VO, et al. Soluble CD14 levels, interleukin 6, and mortality among prevalent hemodialysis patients.
Am J Kidney Dis 2009;54:1072-1080.
35. Miyazaki T, Ise M, Hirata M, et al. Indoxyl sulfate stimulates renal synthesis of transforming growth factor-beta 1 and progression of renal failure.
Kidney Int Suppl 1997;63:S211-S2114.
36. Muteliefu G, Enomoto A, Jiang P, Takahashi M, Niwa T. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells.
Nephrol Dial Transplant 2009;24:2051-2058.
37. Yu M, Kim YJ, Kang DH. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress.
Clin J Am Soc Nephrol 2011;6:30-39.
38. Hirata J, Hirai K, Asai H, et al. Indoxyl sulfate exacerbates low bone turnover induced by parathyroidectomy in young adult rats.
Bone 2015;79:252-258.
39. Tang WH, Wang Z, Kennedy DJ, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease.
Circ Res 2015;116:448-455.
40. Missailidis C, Hällqvist J, Qureshi AR, et al. Serum trimethylamine-N-oxide is strongly related to renal function and predicts outcome in chronic kidney disease.
PloS One 2016;11:e0141738.
41. Ueda H, Shibahara N, Takagi S, Inoue T, Katsuoka Y. AST-120, an oral adsorbent, delays the initiation of dialysis in patients with chronic kidney diseases.
Ther Apher Dial 2007;11:189-195.
42. Niwa T, Emoto Y, Maeda K, Uehara Y, Yamada N, Shibata M. Oral sorbent suppresses accumulation of albumin-bound indoxyl sulphate in serum of haemodialysis patients.
Nephrol Dial Transplant 1991;6:105-109.
43. Akizawa T, Asano Y, Morita S, et al. Effect of a carbonaceous oral adsorbent on the progression of CKD: a multicenter, randomized, controlled trial.
Am J Kidney Dis 2009;54:459-467.
44. Schulman G, Berl T, Beck GJ, et al. Randomized placebo-controlled EPPIC trials of AST-120 in CKD.
J Am Soc Nephrol 2015;26:1732-1746.
45. Soleimani A, Zarrati Mojarrad M, Bahmani F, et al. Probiotic supplementation in diabetic hemodialysis patients has beneficial metabolic effects.
Kidney Int 2017;91:435-442.
46. Rossi M, Johnson DW, Morrison M, et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial.
Clin J Am Soc Nephrol 2016;11:223-231.
47. Jia L, Jia Q, Yang J, Jia R, Zhang H. Efficacy of probiotics supplementation on chronic kidney disease: a systematic review and meta-analysis.
Kidney Blood Press Res 2018;43:1623-1635.
48. Lobel L, Cao YG, Fenn K, Glickman JN, Garrett WS. Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function.
Science 2020;369:1518-1524.
49. Yang J, Kim CJ, Go YS, et al. Intestinal microbiota control acute kidney injury severity by immune modulation.
Kidney Int 2020;98:932-946.
50. Lee TH, Park D, Kim YJ, et al. Lactobacillus salivarius BP121 prevents cisplatin‑induced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and p‑cresol sulfate via alleviating dysbiosis.
Int J Mol Med 2020;45:1130-1140.
51. Andrade-Oliveira V, Amano MT, Correa-Costa M, et al. Gut bacteria products prevent AKI induced by ischemia-reperfusion.
J Am Soc Nephrol 2015;26:1877-1888.
52. Nakade Y, Iwata Y, Furuichi K, et al. Gut microbiota-derived D-serine protects against acute kidney injury.
JCI Insight 2018;3:e97957.
53. Kim H, Jo MK, Kwak C, et al. Prevalence and epidemiologic characteristics of urolithiasis in Seoul, Korea.
Urology 2002;59:517-521.
54. Curhan GC. Epidemiology of stone disease.
Urol Clin North Am 2007;34:287-293.
55. Stern JM, Moazami S, Qiu Y, et al. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers.
Urolithiasis 2016;44:399-407.
56. Stanford J, Charlton K, Stefoska-Needham A, Ibrahim R, Lambert K. The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature.
BMC Nephrol 2020;21:215.
57. Allison MJ, Dawson KA, Mayberry WR, Foss JG. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract.
Arch Microbiol 1985;141:1-7.
58. Kaufman DW, Kelly JP, Curhan GC, et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones.
J Am Soc Nephrol 2008;19:1197-203.
59. Hoppe B, Beck B, Gatter N, et al. Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1.
Kidney Int 2006;70:1305-1311.
60. Milliner D, Hoppe B, Groothoff J. A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria.
Urolithiasis 2018;46:313-323.
61. Peck AB, Canales BK, Nguyen CQ. Oxalate-degrading microorganisms or oxalate-degrading enzymes: which is the future therapy for enzymatic dissolution of calcium-oxalate uroliths in recurrent stone disease?
Urolithiasis 2016;44:45-50.
62. Stern JM, Urban-Maldonado M, Usyk M, et al. Fecal transplant modifies urine chemistry risk factors for urinary stone disease.
Physiol Rep 2019;7:e14012.
63. Lieske JC, Tremaine WJ, De Simone C, et al. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation.
Kidney Int 2010;78:1178-1185.
64. Campbell PM, Humphreys GJ, Summers AM, et al. Does the microbiome affect the outcome of renal transplantation?
Front Cell Infect Microbiol 2020;10:558644.
65. Fricke WF, Maddox C, Song Y, Bromberg JS. Human microbiota characterization in the course of renal transplantation.
Am J Transplant 2014;14:416-427.
66. Swarte JC, Douwes RM, Hu S, et al. Characteristics and dysbiosis of the gut microbiome in renal transplant recipients.
J Clin Med 2020;9:386.
67. Lee JR, Muthukumar T, Dadhania D, et al. Gut microbial community structure and complications after kidney transplantation: a pilot study.
Transplantation 2014;98:697-705.
68. Diaz PI, Hong BY, Frias-Lopez J, et al. Transplantation-associated long-term immunosuppression promotes oral colonization by potentially opportunistic pathogens without impacting other members of the salivary bacteriome.
Clin Vaccine Immunol 2013;20:920-930.
69. Kim JE, Kim HE, Cho H, et al. Effect of the similarity of gut microbiota composition between donor and recipient on graft function after living donor kidney transplantation.
Sci Rep 2020;10:18881.
70. Lee JR, Muthukumar T, Dadhania D, et al. Gut microbiota and tacrolimus dosing in kidney transplantation.
PloS One 2015;10:e0122399.