1. Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer.
N Engl J Med 2018;378:113–125.
2. Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer.
N Engl J Med 2016;375:1823–1833.
3. Barnett LMA, Cummings BS. Nephrotoxicity and renal pathophysiology: a contemporary perspective.
Toxicol Sci 2018;164:379–390.
4. Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer.
Gene 2006;366:2–16.
5. Ahn MJ, Han JY, Lee KH, et al. Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1-2 study.
Lancet Oncol 2019;20:1681–1690.
6. Mitsudomi T. Molecular epidemiology of lung cancer and geographic variations with special reference to EGFR mutations.
Transl Lung Cancer Res 2014;3:205–211.
7. Yoshimura M, Nakamura S, Imamura F, Ueno K, Yamamoto S, Igarashi T. Severe myelotoxicity in a combination of gefitinib and vinorelbine.
Lung Cancer 2004;45:121–123.
8. Miller AA, Murry DJ, Owzar K, et al. Phase I and pharmacokinetic study of erlotinib for solid tumors in patients with hepatic or renal dysfunction: CALGB 60101.
J Clin Oncol 2007;25:3055–3060.
9. Imai H, Kaira K, Naruse I, et al. Successful afatinib treatment of advanced non-small-cell lung cancer patients undergoing hemodialysis.
Cancer Chemother Pharmacol 2017;79:209–213.
10. Bersanelli M, Tiseo M, Artioli F, Lucchi L, Ardizzoni A. Gefitinib and afatinib treatment in an advanced non-small cell lung cancer (NSCLC) patient undergoing hemodialysis.
Anticancer Res 2014;34:3185–3188.
11. Kaneko T, Shimizu A, Aoki M, Tsuruoka S. A case of gefitinib-associated membranous nephropathy in treatment for pulmonary adenocarcinoma.
CEN Case Rep 2015;4:31–37.
12. Maruyama K, Chinda J, Kuroshima T, et al. Minimal change nephrotic syndrome associated with gefitinib and a successful switch to erlotinib.
Intern Med 2015;54:823–826.
13. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment.
N Engl J Med 2008;358:1160–1174.
14. Groenestege WM, Thébault S, van der Wijst J, et al. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia.
J Clin Invest 2007;117:2260–2267.
15. Cao Y, Liao C, Tan A, Liu L, Gao F. Meta-analysis of incidence and risk of hypomagnesemia with cetuximab for advanced cancer.
Chemotherapy 2010;56:459–465.
16. Petrelli F, Borgonovo K, Cabiddu M, Ghilardi M, Barni S. Risk of anti-EGFR monoclonal antibody-related hypomagnesemia: systematic review and pooled analysis of randomized studies.
Expert Opin Drug Saf 2012;11 Suppl 1:S9–S19.
17. Schnell P, Bartlett CH, Solomon BJ, et al. Complex renal cysts associated with crizotinib treatment.
Cancer Med 2015;4:887–896.
18. Longo V, Catino AM, Montrone M, et al. Development of complex renal cysts during crizotinib treatment and also during alectinib treatment: a possible drug class effect?
J Thorac Oncol 2019;14:e170.
19. Camidge DR, Kim EE, Usari T, Polli A, Lewis I, Wilner KD. Renal effects of crizotinib in patients with ALK-positive advanced NSCLC.
J Thorac Oncol 2019;14:1077–1085.
20. Camidge DR, Brosnan EM, DeSilva C, Koo PJ, Chonchol M. Crizotinib effects on creatinine and non-creatinine-based measures of glomerular filtration rate.
J Thorac Oncol 2014;9:1634–1637.
21. Arakawa H, Omote S, Tamai I. Inhibitory effect of crizotinib on creatinine uptake by renal secretory transporter OCT2.
J Pharm Sci 2017;106:2899–2903.
22. Gastaud L, Ambrosetti D, Otto J, et al. Acute kidney injury following crizotinib administration for non-small-cell lung carcinoma.
Lung Cancer 2013;82:362–364.
23. Ramachandran P, Morcus R, Tahir M, Onukogu I, Spinowitz B, Wang JC. Alectinib (Alecensa)-induced reversible grade IV nephrotoxicity: a case report and review of the literature.
J Med Case Rep 2018;12:303.
24. Abbas A, Mirza MM, Ganti AK, Tendulkar K. Renal toxicities of targeted therapies.
Target Oncol 2015;10:487–499.
25. Marcolino MS, Boersma E, Clementino NCD, et al. Imatinib treatment duration is related to decreased estimated glomerular filtration rate in chronic myeloid leukemia patients.
Ann Oncol 2011;22:2073–2079.
26. Demetri GD, Lo Russo P, MacPherson IR, et al. Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors.
Clin Cancer Res 2009;15:6232–6240.
27. Ozkurt S, Temiz G, Acikalin MF, Soydan M. Acute renal failure under dasatinib therapy.
Ren Fail 2010;32:147–149.
28. Calizo RC, Bhattacharya S, van Hasselt JGC, et al. Disruption of podocyte cytoskeletal biomechanics by dasatinib leads to nephrotoxicity.
Nat Commun 2019;10:2061.
29. Ochiai S, Sato Y, Minakawa A, Fukuda A, Fujimoto S. Dasatinib-induced nephrotic syndrome in a patient with chronic myelogenous leukemia: a case report.
BMC Nephrol 2019;20:87.
30. Wu S, Kim C, Baer L, Zhu X. Bevacizumab increases risk for severe proteinuria in cancer patients.
J Am Soc Nephrol 2010;21:1381–1389.
31. Izzedine H, Massard C, Spano JP, Goldwasser F, Khayat D, Soria JC. VEGF signalling inhibition-induced proteinuria: mechanisms, significance and management.
Eur J Cancer 2010;46:439–448.
32. Zhao T, Wang X, Xu T, Xu X, Liu Z. Bevacizumab significantly increases the risks of hypertension and proteinuria in cancer patients: a systematic review and comprehensive meta-analysis.
Oncotarget 2017;8:51492–51506.
33. Saif MW, Mehra R. Incidence and management of bevacizumab-related toxicities in colorectal cancer.
Expert Opin Drug Saf 2006;5:553–566.
34. Miles D, Bridgewater J, Ellis P, et al. Using bevacizumab to treat metastatic cancer: UK consensus guidelines.
Br J Hosp Med (Lond) 2010;71:670–677.
35. Izzedine H, Escudier B, Lhomme C, et al. Kidney diseases associated with anti-vascular endothelial growth factor (VEGF): an 8-year observational study at a single center.
Medicine (Baltimore) 2014;93:333–339.
36. Li M, Kroetz DL. Bevacizumab-induced hypertension: clinical presentation and molecular understanding.
Pharmacol Ther 2018;182:152–160.
37. Ranpura V, Pulipati B, Chu D, Zhu X, Wu S. Increased risk of high-grade hypertension with bevacizumab in cancer patients: a meta-analysis.
Am J Hypertens 2010;23:460–468.
38. Miyake M, Kuwada M, Hori S, et al. The best objective response of target lesions and the incidence of treatment-related hypertension are associated with the survival of patients with metastatic renal cell carcinoma treated with sunitinib: a Japanese retrospective study.
BMC Res Notes 2016;9:79.
39. Rini BI, Schiller JH, Fruehauf JP, et al. Diastolic blood pressure as a biomarker of axitinib efficacy in solid tumors.
Clin Cancer Res 2011;17:3841–3849.
40. Dionísio de Sousa IJ, Ferreira J, Rodrigues J, et al. Association between bevacizumab-related hypertension and response to treatment in patients with metastatic colorectal cancer.
ESMO Open 2016;1:e000045.
41. Syrigos KN, Karapanagiotou E, Boura P, Manegold C, Harrington K. Bevacizumab-induced hypertension: pathogenesis and management.
BioDrugs 2011;25:159–169.
42. Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
Lancet 2008;372:449–456.
43. Letavernier E, Legendre C. mToR inhibitors-induced proteinuria: mechanisms, significance, and management.
Transplant Rev (Orlando) 2008;22:125–130.
44. Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial.
Lancet Oncol 2016;17:917–927.
45. Motzer RJ, Hutson TE, Glen H, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial.
Lancet Oncol 2015;16:1473–1482.
46. Izzedine H, Escudier B, Rouvier P, et al. Acute tubular necrosis associated with mTOR inhibitor therapy: a real entity biopsy-proven.
Ann Oncol 2013;24:2421–2425.
47. Izzedine H, Boostandoot E, Spano JP, Bardier A, Khayat D. Temsirolimus-induced glomerulopathy.
Oncology 2009;76:170–172.
48. Kwitkowski VE, Prowell TM, Ibrahim A, et al. FDA approval summary: temsirolimus as treatment for advanced renal cell carcinoma.
Oncologist 2010;15:428–435.
49. Cantwell-Dorris ER, O\'Leary JJ, Sheils OM. BRAF
V600E: implications for carcinogenesis and molecular therapy.
Mol Cancer Ther 2011;10:385–394.
50. Ascierto PA, Kirkwood JM, Grob JJ, et al. The role of BRAF V600 mutation in melanoma.
J Transl Med 2012;10:85.
51. Planchard D, Smit EF, Groen HJM, et al. Dabrafenib plus trametinib in patients with previously untreated BRAF
V600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial.
Lancet Oncol 2017;18:1307–1316.
52. Seth R, Messersmith H, Kaur V, et al. Systemic therapy for melanoma: ASCO guideline.
J Clin Oncol 2020;38:3947–3970.
53. Uthurriague C, Thellier S, Ribes D, Rostaing L, Paul C, Meyer N. Vemurafenib significantly decreases glomerular filtration rate.
J Eur Acad Dermatol Venereol 2014;28:978–979.
54. Hurabielle C, Pillebout E, Stehlé T, et al. Mechanisms underpinning increased plasma creatinine levels in patients receiving vemurafenib for advanced melanoma.
PLoS One 2016;11:e0149873.
55. Launay-Vacher V, Zimner-Rapuch S, Poulalhon N, et al. Acute renal failure associated with the new BRAF inhibitor vemurafenib: a case series of 8 patients.
Cancer 2014;120:2158–2163.
56. Jhaveri KD, Sakhiya V, Fishbane S. Nephrotoxicity of the BRAF inhibitors vemurafenib and dabrafenib.
JAMA Oncol 2015;1:1133–1134.
57. Chiang AC, Herbst RS. Frontline immunotherapy for NSCLC - the tale of the tail.
Nat Rev Clin Oncol 2020;17:73–74.
58. Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity.
CA Cancer J Clin 2020;70:86–104.
59. Almutairi AR, McBride A, Slack M, Erstad BL, Abraham I. Potential immune-related adverse events associated with monotherapy and combination therapy of ipilimumab, nivolumab, and pembrolizumab for advanced melanoma: a systematic review and meta-analysis.
Front Oncol 2020;10:91.
60. Perazella MA, Shirali AC. Immune checkpoint inhibitor nephrotoxicity: what do we know and what should we do?
Kidney Int 2020;97:62–74.
61. Manohar S, Kompotiatis P, Thongprayoon C, et al. Programmed cell death protein 1 inhibitor treatment is associated with acute kidney injury and hypocalcemia: meta-analysis.
Nephrol Dial Transplant 2019;34:108–117.
62. Weber JS, Hodi FS, Wolchok JD, et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma.
J Clin Oncol 2017;35:785–792.
63. Cortazar FB, Marrone KA, Troxell ML, et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors.
Kidney Int 2016;90:638–647.
64. Wanchoo R, Karam S, Uppal NN, et al. Adverse renal effects of immune checkpoint inhibitors: a narrative review.
Am J Nephrol 2017;45:160–169.
65. Seethapathy H, Zhao S, Chute DF, et al. The incidence, causes, and risk factors of acute kidney injury in patients receiving immune checkpoint inhibitors.
Clin J Am Soc Nephrol 2019;14:1692–1700.
66. Cortazar FB, Kibbelaar ZA, Glezerman IG, et al. Clinical features and outcomes of immune checkpoint inhibitor-associated AKI: a multicenter study.
J Am Soc Nephrol 2020;31:435–446.
67. Shirali AC, Perazella MA, Gettinger S. Association of acute interstitial nephritis with programmed cell death 1 inhibitor therapy in lung cancer patients.
Am J Kidney Dis 2016;68:287–291.
68. Kidd JM, Gizaw AB. Ipilimumab-associated minimal-change disease.
Kidney Int 2016;89:720.
69. Fadel F, El Karoui K, Knebelmann B. Anti-CTLA4 antibody-induced lupus nephritis.
N Engl J Med 2009;361:211–212.
70. Jung K, Zeng X, Bilusic M. Nivolumab-associated acute glomerulonephritis: a case report and literature review.
BMC Nephrol 2016;17:188.
71. Perazella MA, Shirali AC. Nephrotoxicity of cancer immunotherapies: past, present and future.
J Am Soc Nephrol 2018;29:2039–2052.
72. Brahmer JR, Lacchetti C, Schneider BJ, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline.
J Clin Oncol 2018;36:1714–1768.
73. Haanen JB, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017;28(Suppl 4):iv119–iv142.
74. Manohar S, Thongprayoon C, Cheungpasitporn W, Markovic SN, Herrmann SM. Systematic review of the safety of immune checkpoint inhibitors among kidney transplant patients.
Kidney Int Rep 2019;5:149–158.
75. Murakami N, Riella LV. Co-inhibitory pathways and their importance in immune regulation.
Transplantation 2014;98:3–14.
76. Abdel-Wahab N, Safa H, Abudayyeh A, et al. Checkpoint inhibitor therapy for cancer in solid organ transplantation recipients: an institutional experience and a systematic review of the literature.
J Immunother Cancer 2019;7:106.
77. Moreau A, Varey E, Anegon I, Cuturi MC. Effector mechanisms of rejection.
Cold Spring Harb Perspect Med 2013;3:a015461.
78. Tanaka K, Albin MJ, Yuan X, et al. PDL1 is required for peripheral transplantation tolerance and protection from chronic allograft rejection.
J Immunol 2007;179:5204–5210.
79. Hu B, Yang XB, Sang XT. Liver graft rejection following immune checkpoint inhibitors treatment: a review.
Med Oncol 2019;36:94.
80. Kumar V, Shinagare AB, Rennke HG, et al. The safety and efficacy of checkpoint inhibitors in transplant recipients: a case series and systematic review of literature.
Oncologist 2020;25:505–514.
81. Berraondo P, Sanmamed MF, Ochoa MC, et al. Cytokines in clinical cancer immunotherapy.
Br J Cancer 2019;120:6–15.
82. Anders HJ, Lichtnekert J, Allam R. Interferon-alpha and -beta in kidney inflammation.
Kidney Int 2010;77:848–854.
83. Weiss K. Safety profile of interferon-alpha therapy.
Semin Oncol 1998;25(1 Suppl 1):9–13.
84. Guleria AS, Yang JC, Topalian SL, et al. Renal dysfunction associated with the administration of high-dose interleukin-2 in 199 consecutive patients with metastatic melanoma or renal carcinoma.
J Clin Oncol 1994;12:2714–2722.
85. Poust JC, Woolery JE, Green MR. Management of toxicities associated with high-dose interleukin-2 and biochemotherapy.
Anticancer Drugs 2013;24:1–13.
86. Gutgarts V, Jain T, Zheng J, et al. Acute kidney injury after CAR-T cell therapy: low incidence and rapid recovery.
Biol Blood Marrow Transplant 2020;26:1071–1076.
87. Gupta S, Seethapathy H, Strohbehn IA, et al. Acute kidney injury and electrolyte abnormalities after chimeric antigen receptor T-cell (CAR-T) therapy for diffuse large B-cell lymphoma.
Am J Kidney Dis 2020;76:63–71.