1. Johnson RJ, Andrews P, Benner SA, Oliver W. Theodore E. Woodward award: the evolution of obesity: insights from the mid-Miocene.
Trans Am Clin Climatol Assoc 2010;121:295–308.
2. Johnson RJ, Stenvinkel P, Andrews P, et al. Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts.
J Intern Med 2020;287:252–262.
3. Park TJ, Reznick J, Peterson BL, et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat.
Science 2017;356:307–311.
4. Bacon JS, Bell DJ. The identification of fructose as a constituent of the foetal blood of the sheep. Biochem J 1946;40:xlii.
5. Goodwin RF. Division of the common mammals into two groups according to the concentration of fructose in the blood of the foetus.
J Physiol 1956;132:146–156.
6. Jauniaux E, Hempstock J, Teng C, Battaglia FC, Burton GJ. Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy: maintenance of redox potential in a low oxygen environment.
J Clin Endocrinol Metab 2005;90:1171–1175.
7. Johnson RJ, Segal MS, Sautin Y, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease.
Am J Clin Nutr 2007;86:899–906.
8. Neilson EG. The fructose nation.
J Am Soc Nephrol 2007;18:2619–2621.
9. Saldana TM, Basso O, Darden R, Sandler DP. Carbonated beverages and chronic kidney disease.
Epidemiology 2007;18:501–506.
10. Rebholz CM, Young BA, Katz R, et al. Patterns of beverages consumed and risk of incident kidney disease.
Clin J Am Soc Nephrol 2019;14:49–56.
11. Bomback AS, Katz R, He K, Shoham DA, Burke GL, Klemmer PJ. Sugar-sweetened beverage consumption and the progression of chronic kidney disease in the Multi-Ethnic Study of Atherosclerosis (MESA).
Am J Clin Nutr 2009;90:1172–1178.
12. Sundborn G, Thornley S, Merriman TR, et al. Are liquid sugars different from solid sugar in their ability to cause metabolic syndrome?
Obesity (Silver Spring) 2019;27:879–887.
13. Brymora A, Flisiński M, Johnson RJ, Goszka G, Stefańska A, Manitius J. Low-fructose diet lowers blood pressure and inflammation in patients with chronic kidney disease.
Nephrol Dial Transplant 2012;27:608–612.
14. Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, et al. The small intestine converts dietary fructose into glucose and organic acids.
Cell Metab 2018;27:351–361.
15. Soty M, Penhoat A, Amigo-Correig M, Vinera J, Sardella A, Vullin-Bouilloux F, et al. A gut-brain neural circuit controlled by intestinal gluconeogenesis is crucial in metabolic health.
Mol Metab 2014;4:106–117.
16. Andres-Hernando A, Orlicky DJ, Kuwabara M, et al. Deletion of fructokinase in the liver or in the intestine reveals differential effects on sugar-induced metabolic dysfunction.
Cell Metab 2020;32:117–127.
17. Softic S, Meyer JG, Wang GX, et al. Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins.
Cell Metab 2019;30:735–753.
18. Macdonald I, Keyser A, Pacy D. Some effects, in man, of varying the load of glucose, sucrose, fructose, or sorbitol on various metabolites in blood.
Am J Clin Nutr 1978;31:1305–1311.
19. Nakayama T, Kosugi T, Gersch M, et al. Dietary fructose causes tubulointerstitial injury in the normal rat kidney.
Am J Physiol Renal Physiol 2010;298:F712–F720.
20. Chin E, Zhou J, Bondy C. Anatomical and developmental patterns of facilitative glucose transporter gene expression in the rat kidney.
J Clin Invest 1993;91:1810–1815.
21. Grempler R, Augustin R, Froehner S, et al. Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter.
FEBS Lett 2012;586:248–253.
22. Fukuzawa T, Fukazawa M, Ueda O, et al. SGLT5 reabsorbs fructose in the kidney but its deficiency paradoxically exacerbates hepatic steatosis induced by fructose.
PLoS One 2013;8:e56681.
23. Gonzalez-Vicente A, Cabral PD, Hong NJ, Asirwatham J, Saez F, Garvin JL. Fructose reabsorption by rat proximal tubules: role of Na+-linked cotransporters and the effect of dietary fructose.
Am J Physiol Renal Physiol 2019;316:F473–F480.
24. Horiba N, Masuda S, Ohnishi C, Takeuchi D, Okuda M, Inui K. Na(+)-dependent fructose transport via rNaGLT1 in rat kidney.
FEBS Lett 2003;546:276–280.
25. Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, Moley KH. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking.
J Biol Chem 2004;279:16229–16236.
26. Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia.
Am J Hum Genet 2008;83:744–751.
27. So A, Thorens B. Uric acid transport and disease.
J Clin Invest 2010;120:1791–1799.
28. Kimura T, Takahashi M, Yan K, Sakurai H. Expression of SLC2A9 isoforms in the kidney and their localization in polarized epithelial cells.
PLoS One 2014;9:e84996.
29. Marks J, Carvou NJ, Debnam ES, Srai SK, Unwin RJ. Diabetes increases facilitative glucose uptake and GLUT2 expression at the rat proximal tubule brush border membrane.
J Physiol 2003;553(Pt 1):137–145.
30. Burch HB, Choi S, Dence CN, Alvey TR, Cole BR, Lowry OH. Metabolic effects of large fructose loads in different parts of the rat nephron.
J Biol Chem 1980;255:8239–8244.
31. Kranhold JF, Loh D, Morris RC Jr. Renal fructose-metabolizing enzymes: significance in hereditary fructose intolerance.
Science 1969;165:402–403.
32. Coffee EM, Tolan DR. Gluconeogenesis. In: Lee B, Scaglia F, Inborn errors in metabolism: from neonatal screening to metabolic pathways. New York: Oxford University Press; 2014. p. 68–91.
33. Alleyne GA, Scullard GH. Renal metabolic response to acid base changes. I. Enzymatic control of ammoniagenesis in the rat.
J Clin Invest 1969;48:364–370.
34. Guder WG, Ross BD. Enzyme distribution along the nephron.
Kidney Int 1984;26:101–111.
35. Schmidt U, Guder WG. Sites of enzyme activity along the nephron.
Kidney Int 1976;9:233–242.
36. Schmidt U, Marosvari I, Dubach UC. Renal metabolism of glucose: anatomical sites of hexokinase activity in the rat nephron.
FEBS Lett 1975;53:26–28.
37. Salomon LL, Lanza FL, Smith DE. Renal conversion of fructose to glucose.
Am J Physiol 1961;200:871–877.
38. Björkman O, Felig P. Role of the kidney in the metabolism of fructose in 60-hour fasted humans.
Diabetes 1982;31(6 Pt 1):516–520.
39. Aoyama M, Isshiki K, Kume S, et al. Fructose induces tubulointerstitial injury in the kidney of mice.
Biochem Biophys Res Commun 2012;419:244–249.
40. Gersch MS, Mu W, Cirillo P, et al. Fructose, but not dextrose, accelerates the progression of chronic kidney disease.
Am J Physiol Renal Physiol 2007;293:F1256–F1261.
41. Cirillo P, Gersch MS, Mu W, et al. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells.
J Am Soc Nephrol 2009;20:545–553.
42. Giansante C, Fiotti N. Insights into human hypertension: the role of endothelial dysfunction.
J Hum Hypertens 2006;20:725–726.
43. Glushakova O, Kosugi T, Roncal C, et al. Fructose induces the inflammatory molecule ICAM-1 in endothelial cells.
J Am Soc Nephrol 2008;19:1712–1720.
44. Nakagawa T. Uncoupling of the VEGF-endothelial nitric oxide axis in diabetic nephropathy: an explanation for the paradoxical effects of VEGF in renal disease.
Am J Physiol Renal Physiol 2007;292:F1665–F1672.
45. Nakagawa T, Tanabe K, Croker BP, et al. Endothelial dysfunction as a potential contributor in diabetic nephropathy.
Nat Rev Nephrol 2011;7:36–44.
46. Khosla UM, Zharikov S, Finch JL, et al. Hyperuricemia induces endothelial dysfunction.
Kidney Int 2005;67:1739–1742.
47. Nakagawa T, Hu H, Zharikov S, et al. A causal role for uric acid in fructose-induced metabolic syndrome.
Am J Physiol Renal Physiol 2006;290:F625–F631.
48. Jones N, Blagih J, Zani F, et al. Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-induced inflammation.
Nat Commun 2021;12:1209.
49. Choe JY, Kim SK. Quercetin and ascorbic acid suppress fructose-induced NLRP3 inflammasome activation by blocking intracellular shuttling of TXNIP in human macrophage cell lines.
Inflammation 2017;40:980–994.
50. Wilson DF, Rumsey WL, Green TJ, Vanderkooi JM. The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration.
J Biol Chem 1988;263:2712–2718.
51. Semba H, Takeda N, Isagawa T, et al. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity.
Nat Commun 2016;7:11635.
52. Nguyen S, Choi HK, Lustig RH, Hsu CY. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents.
J Pediatr 2009;154:807–813.
53. Cabral PD, Hong NJ, Hye Khan MA, et al. Fructose stimulates Na/H exchange activity and sensitizes the proximal tubule to angiotensin II.
Hypertension 2014;63:e68–e73.
54. Gonzalez-Vicente A, Cabral PD, Hong NJ, et al. Dietary fructose enhances the ability of low concentrations of angiotensin II to stimulate proximal tubule Na⁺ reabsorption.
Nutrients 2017;9:885.
55. Watanabe S, Kang DH, Feng L, et al. Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity.
Hypertension 2002;40:355–360.
56. Nakagawa T, Johnson RJ, Andres-Hernando A, et al. Fructose production and metabolism in the kidney.
J Am Soc Nephrol 2020;31:898–906.
57. Lan R, Geng H, Singha PK, et al. Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI.
J Am Soc Nephrol 2016;27:3356–3367.
58. Van Schaftingen E, Detheux M, Veiga da Cunha M. Short-term control of glucokinase activity: role of a regulatory protein.
FASEB J 1994;8:414–419.
59. Agius L, Peak M. Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin.
Biochem J 1993;296(Pt 3):785–796.
60. Brown KS, Kalinowski SS, Megill JR, Durham SK, Mookhtiar KA. Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus.
Diabetes 1997;46:179–186.
61. Niculescu L, Veiga-da-Cunha M, Van Schaftingen E. Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes.
Biochem J 1997;321(Pt 1):239–246.
62. Shiota M, Galassetti P, Monohan M, Neal DW, Cherrington AD. Small amounts of fructose markedly augment net hepatic glucose uptake in the conscious dog.
Diabetes 1998;47:867–873.
63. Mathupala SP, Ko YH, Pedersen PL. Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria.
Oncogene 2006;25:4777–4786.
64. Gall JM, Wong V, Pimental DR, et al. Hexokinase regulates Bax-mediated mitochondrial membrane injury following ischemic stress.
Kidney Int 2011;79:1207–1216.
65. Andres-Hernando A, Li N, Cicerchi C, et al. Protective role of fructokinase blockade in the pathogenesis of acute kidney injury in mice.
Nat Commun 2017;8:14181.
66. Lanaspa MA, Ishimoto T, Cicerchi C, et al. Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy.
J Am Soc Nephrol 2014;25:2526–2538.
67. Roncal-Jimenez CA, Ishimoto T, Lanaspa MA, et al. Aging-associated renal disease in mice is fructokinase dependent.
Am J Physiol Renal Physiol 2016;311:F722–F730.
68. Lanaspa MA, Kuwabara M, Andres-Hernando A, et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism.
Proc Natl Acad Sci U S A 2018;115:3138–3143.
69. Mirtschink P, Krishnan J, Grimm F, et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease.
Nature 2015;522:444–449.
70. Hayward BE, Bonthron DT. Structure and alternative splicing of the ketohexokinase gene.
Eur J Biochem 1998;257:85–91.
71. Diggle CP, Shires M, Leitch D, et al. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme.
J Histochem Cytochem 2009;57:763–774.
72. Asipu A, Hayward BE, O'Reilly J, Bonthron DT. Properties of normal and mutant recombinant human ketohexokinases and implications for the pathogenesis of essential fructosuria.
Diabetes 2003;52:2426–2432.
73. Lecoultre V, Benoit R, Carrel G, et al. Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose.
Am J Clin Nutr 2010;92:1071–1079.
74. San-Millán I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect.
Carcinogenesis 2017;38:119–133.
75. Stincone A, Prigione A, Cramer T, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway.
Biol Rev Camb Philos Soc 2015;90:927–963.
76. Lanaspa MA, Sanchez-Lozada LG, Cicerchi C, et al. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver.
PLoS One 2012;7:e47948.
77. Woods HF, Eggleston LV, Krebs HA. The cause of hepatic accumulation of fructose 1-phosphate on fructose loading.
Biochem J 1970;119:501–510.
78. Lanaspa MA, Sanchez-Lozada LG, Choi YJ, et al. Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver.
J Biol Chem 2012;287:40732–40744.
79. Nakagawa T, Lanaspa MA, Millan IS, et al. Fructose contributes to the Warburg effect for cancer growth.
Cancer Metab 2020;8:16.
80. Warburg O. On respiratory impairment in cancer cells.
Science 1956;124:269–270.
81. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism.
Nat Rev Cancer 2011;11:325–337.
82. Chen Z, Liu M, Li L, Chen L. Involvement of the Warburg effect in non-tumor diseases processes.
J Cell Physiol 2018;233:2839–2849.
83. Yang D, Wang MT, Tang Y, et al. Impairment of mitochondrial respiration in mouse fibroblasts by oncogenic H-RAS(Q61L).
Cancer Biol Ther 2010;9:122–133.
84. Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways.
Science 2001;292:504–507.
85. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.
Annu Rev Cell Dev Biol 2011;27:441–464.
86. Rowe I, Chiaravalli M, Mannella V, et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy.
Nat Med 2013;19:488–493.
87. Chiaravalli M, Rowe I, Mannella V, et al. 2-Deoxy-d-glucose ameliorates PKD progression.
J Am Soc Nephrol 2016;27:1958–1969.
88. Naudi A, Jove M, Ayala V, et al. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress.
Exp Diabetes Res 2012;2012:696215.
89. Sharma K, Karl B, Mathew AV, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease.
J Am Soc Nephrol 2013;24:1901–1912.
90. Sas KM, Kayampilly P, Byun J, et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications.
JCI Insight 2016;1:e86976.
91. Ding H, Jiang L, Xu J, et al. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.
Am J Physiol Renal Physiol 2017;313:F561–F575.
92. Werle M, Kreuzer J, Höfele J, et al. Metabolic control analysis of the Warburg-effect in proliferating vascular smooth muscle cells.
J Biomed Sci 2005;12:827–834.
93. DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect.
Nat Metab 2020;2:127–129.
94. Goraya N, Munoz-Maldonado Y, Simoni J, Wesson DE. Fruit and vegetable treatment of chronic kidney disease-related metabolic acidosis reduces cardiovascular risk better than sodium bicarbonate.
Am J Nephrol 2019;49:438–448.
95. Rebholz CM, Crews DC, Grams ME, et al. DASH (dietary approaches to stop hypertension) diet and risk of subsequent kidney disease.
Am J Kidney Dis 2016;68:853–861.
96. Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications.
Am J Clin Nutr 2001;74:418–425.
97. Berger L, Gerson CD, Yü TF. The effect of ascorbic acid on uric acid excretion with a commentary on the renal handling of ascorbic acid.
Am J Med 1977;62:71–76.
98. Wu TK, Wei CW, Pan YR, et al. Vitamin C attenuates the toxic effect of aristolochic acid on renal tubular cells via decreasing oxidative stress‑mediated cell death pathways.
Mol Med Rep 2015;12:6086–6092.
99. Reungjui S, Hu H, Mu W, et al. Thiazide-induced subtle renal injury not observed in states of equivalent hypokalemia.
Kidney Int 2007;72:1483–1492.
100. Nakagawa T, Lanaspa MA, Johnson RJ. The effects of fruit consumption in patients with hyperuricaemia or gout.
Rheumatology (Oxford) 2019;58:1133–1141.
101. Du H, Li L, Bennett D, et al. Fresh fruit consumption and major cardiovascular disease in China.
N Engl J Med 2016;374:1332–1343.
102. Zheng J, Yang B, Tuomasjukka S, Ou S, Kallio H. Effects of latitude and weather conditions on contents of sugars, fruit acids, and ascorbic acid in black currant (Ribes nigrum L.) juice.
J Agric Food Chem 2009;57:2977–2987.
103. Nagy S. Vitamin C contents of citrus fruit and their products: a review.
J Agric Food Chem 1980;28:8–18.