1. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signaling agents.
Nat Rev Mol Cell Biol 2020;21:363–383.
2. Sies H, Berndt C, Jones DP. Oxidative stress.
Annu Rev Biochem 2017;86:715–748.
3. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling.
Circ Res 2018;122:877–902.
6. Lee SR, Kwon KS, Kim SR, Rhee SG. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor.
J Biol Chem 1998;273:15366–15372.
7. Meng TC, Fukada T, Tonks NK. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo.
Mol Cell 2002;9:387–399.
8. Tonks NK. Redox redux: revisiting PTPs and the control of cell signaling.
Cell 2005;121:667–670.
9. Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling.
Science 2006;312:1882–1883.
11. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.
Physiol Rev 2014;94:909–950.
12. Lambeth JD, Neish AS. Nox enzymes and new thinking on reactive oxygen: a double-edged sword revisited.
Annu Rev Pathol 2014;9:119–145.
13. Mise K, Galvan DL, Danesh FR. Shaping up mitochondria in diabetic nephropathy.
Kidney360 2020;1:982–992.
14. Coughlan MT, Sharma K. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease.
Kidney Int 2016;90:272–279.
15. Lindblom R, Higgins G, Coughlan M, de Haan JB. Targeting mitochondria and reactive oxygen species-driven pathogenesis in diabetic nephropathy.
Rev Diabet Stud 2015;12:134–156.
16. Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria.
J Biol Chem 2001;276:38388–38393.
17. Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria: a physiological role for SOD1 in guarding against mitochondrial oxidative damage.
J Biol Chem 2001;276:38084–38089.
18. Kitada M, Xu J, Ogura Y, Monno I, Koya D. Manganese superoxide dismutase dysfunction and the pathogenesis of kidney disease.
Front Physiol 2020;11:755.
19. Dugan LL, You YH, Ali SS, et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function.
J Clin Invest 2013;123:4888–4899.
20. Vermot A, Petit-Härtlein I, Smith SM, Fieschi F. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology.
Antioxidants (Basel) 2021;10:890.
21. Moghadam ZM, Henneke P, Kolter J. From flies to men: ROS and the NADPH oxidase in phagocytes.
Front Cell Dev Biol 2021;9:628991.
22. Lee SR, An EJ, Kim J, Bae YS. Function of NADPH oxidases in diabetic nephropathy and development of Nox inhibitors.
Biomol Ther (Seoul) 2020;28:25–33.
23. Cheng G, Diebold BA, Hughes Y, Lambeth JD. Nox1-dependent reactive oxygen generation is regulated by Rac1.
J Biol Chem 2006;281:17718–17726.
24. Lyle AN, Deshpande NN, Taniyama Y, et al. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells.
Circ Res 2009;105:249–259.
25. Yoo JY, Cha DR, Kim B, et al. LPS-induced acute kidney injury is mediated by Nox4-SH3YL1.
Cell Rep 2020;33:108245.
27. He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species.
Cell Physiol Biochem 2017;44:532–553.
28. Rhee SG, Kil IS. Multiple functions and regulation of mammalian peroxiredoxins.
Annu Rev Biochem 2017;86:749–775.
29. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid.
Alexandria J Med 2018;54:287–293.
30. Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress.
Free Radic Biol Med 1994;17:235–248.
31. Jha JC, Gray SP, Barit D, et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy.
J Am Soc Nephrol 2014;25:1237–1254.
32. Jiang F, Liu GS, Dusting GJ, Chan EC. NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses.
Redox Biol 2014;2:267–272.
33. Gorin Y, Cavaglieri RC, Khazim K, et al. Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes.
Am J Physiol Renal Physiol 2015;308:F1276–F1287.
34. Holterman CE, Read NC, Kennedy CR. Nox and renal disease.
Clin Sci (Lond) 2015;128:465–481.
35. Badal SS, Danesh FR. New insights into molecular mechanisms of diabetic kidney disease.
Am J Kidney Dis 2014;63(2 Suppl 2):S63–S83.
36. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage.
Nature 2000;404:787–790.
37. Jha JC, Banal C, Chow BS, Cooper ME, Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress.
Antioxid Redox Signal 2016;25:657–684.
38. Østergaard JA, Cooper ME, Jandeleit-Dahm KA. Targeting oxidative stress and anti-oxidant defence in diabetic kidney disease.
J Nephrol 2020;33:917–929.
39. Bolignano D, Cernaro V, Gembillo G, Baggetta R, Buemi M, D’Arrigo G. Antioxidant agents for delaying diabetic kidney disease progression: a systematic review and meta-analysis.
PLoS One 2017;12:e0178699.
40. Klein F, Juhl B, Christiansen JS. Unchanged renal haemodynamics following high dose ascorbic acid administration in normoalbuminuric IDDM patients.
Scand J Clin Lab Invest 1995;55:53–59.
41. Sinclair AJ, Khatieb M, Girling AJ. Reduction in diabetic microalbuminuria after short-term antioxidant therapya pilot and its pitfalls.
Age Ageing 1997;26(suppl 1):P3-c-P3.
42. McAuliffe AV, Brooks BA, Fisher EJ, Molyneaux LM, Yue DK. Administration of ascorbic acid and an aldose reductase inhibitor (tolrestat) in diabetes: effect on urinary albumin excretion.
Nephron 1998;80:277–284.
43. Gaede P, Poulsen HE, Parving HH, Pedersen O. Double-blind, randomised study of the effect of combined treatment with vitamin C and E on albuminuria in type 2 diabetic patients.
Diabet Med 2001;18:756–760.
44. Lonn E, Yusuf S, Hoogwerf B, et al. Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE study and MICRO-HOPE substudy.
Diabetes Care 2002;25:1919–1927.
45. Farvid MS, Jalali M, Siassi F, Hosseini M. Comparison of the effects of vitamins and/or mineral supplementation on glomerular and tubular dysfunction in type 2 diabetes.
Diabetes Care 2005;28:2458–2464.
46. Giannini C, Lombardo F, Currò F, et al. Effects of high-dose vitamin E supplementation on oxidative stress and microalbuminuria in young adult patients with childhood onset type 1 diabetes mellitus.
Diabetes Metab Res Rev 2007;23:539–546.
47. Parham M, Amini M, Aminorroaya A, Heidarian E. Effect of zinc supplementation on microalbuminuria in patients with type 2 diabetes: a double blind, randomized, placebo-controlled, cross-over trial.
Rev Diabet Stud 2008;5:102–109.
48. Fallahzadeh MK, Dormanesh B, Sagheb MM, et al. Effect of addition of silymarin to renin-angiotensin system inhibitors on proteinuria in type 2 diabetic patients with overt nephropathy: a randomized, double-blind, placebo-controlled trial.
Am J Kidney Dis 2012;60:896–903.
49. Khan MI, Siddique KU, Ashfaq F, Ali W, Reddy HD, Mishra A. Effect of high-dose zinc supplementation with oral hypoglycemic agents on glycemic control and inflammation in type-2 diabetic nephropathy patients.
J Nat Sci Biol Med 2013;4:336–340.
50. Noori N, Tabibi H, Hosseinpanah F, Hedayati M, Nafar M. Effects of combined lipoic acid and pyridoxine on albuminuria, advanced glycation end-products, and blood pressure in diabetic nephropathy.
Int J Vitam Nutr Res 2013;83:77–85.
51. Haghighat N, Vafa M, Eghtesadi S, Heidari I, Hosseini A, Rostami A. The effects of tocotrienols added to canola oil on microalbuminuria, inflammation, and nitrosative stress in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial.
Int J Prev Med 2014;5:617–623.
52. Jadhav SS, Kuchake VG, Upasani CD. Evaluation of clinical efficacy of some antioxidants in diabetic nephropathy. Poster papers.
Indian J Pharmacol 2014;46(Suppl 1):S62–S113.
53. Urner S, Ho F, Jha JC, Ziegler D, Jandeleit-Dahm K. NADPH oxidase inhibition: preclinical and clinical studies in diabetic complications.
Antioxid Redox Signal 2020;33:415–434.
54. Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis.
Diabetes Metab Res Rev 2017;33:e2841.
55. Molitch ME, DeFronzo RA, Franz MJ, et al. Nephropathy in diabetes.
Diabetes Care 2004;27 Suppl 1:S79–S83.
56. Caramori ML, Parks A, Mauer M. Renal lesions predict progression of diabetic nephropathy in type 1 diabetes.
J Am Soc Nephrol 2013;24:1175–1181.
57. Tervaert TW, Mooyaart AL, Amann K, et al. Pathologic classification of diabetic nephropathy.
J Am Soc Nephrol 2010;21:556–563.
58. Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy.
J Am Soc Nephrol 2003;14:1358–1373.
59. Wingler K, Wünsch S, Kreutz R, Rothermund L, Paul M, Schmidt HH. Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo.
Free Radic Biol Med 2001;31:1456–1464.
60. Yu P, Han W, Villar VA, et al. Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells.
Redox Biol 2014;2:570–579.
61. Yang Y, Zhang Y, Cuevas S, et al. Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase.
Free Radic Biol Med 2012;53:437–446.
62. Geiszt M, Kopp JB, Várnai P, Leto TL. Identification of renox, an NAD(P)H oxidase in kidney.
Proc Natl Acad Sci U S A 2000;97:8010–8014.
63. Block K, Gorin Y, Abboud HE. Subcellular localization of Nox4 and regulation in diabetes.
Proc Natl Acad Sci U S A 2009;106:14385–14390.
64. Gorin Y, Block K. Nox4 and diabetic nephropathy: with a friend like this, who needs enemies?
Free Radic Biol Med 2013;61:130–142.
65. Shiose A, Kuroda J, Tsuruya K, et al. A novel superoxide-producing NAD(P)H oxidase in kidney.
J Biol Chem 2001;276:1417–1423.
66. Gorin Y, Block K, Hernandez J, et al. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney.
J Biol Chem 2005;280:39616–39626.
67. Xu Y, Ruan S, Xie H, Lin J. Role of LOX-1 in Ang II-induced oxidative functional damage in renal tubular epithelial cells.
Int J Mol Med 2010;26:679–690.
68. Sedeek M, Callera G, Montezano A, et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy.
Am J Physiol Renal Physiol 2010;299:F1348–F1358.
69. You YH, Okada S, Ly S, et al. Role of Nox2 in diabetic kidney disease.
Am J Physiol Renal Physiol 2013;304:F840–F848.
70. Gray SP, Jha JC, Kennedy K, et al. Combined NOX1/4 inhibition with GKT137831 in mice provides dose-dependent reno- and atheroprotection even in established micro- and macrovascular disease.
Diabetologia 2017;60:927–937.
72. Cha JJ, Min HS, Kim KT, et al. APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury.
Lab Invest 2017;97:419–431.
73. Jin SM, Han KA, Yu JM, et al. Probucol in albuminuric type 2 diabetes mellitus patients on renin-angiotensin system blockade: a 16-week, randomized, double-blind, placebo-controlled trial.
Arterioscler Thromb Vasc Biol 2016;36:2108–2114.
74. Gojo A, Utsunomiya K, Taniguchi K, et al. The Rho-kinase inhibitor, fasudil, attenuates diabetic nephropathy in streptozotocin-induced diabetic rats.
Eur J Pharmacol 2007;568:242–247.
75. Kolavennu V, Zeng L, Peng H, Wang Y, Danesh FR. Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control.
Diabetes 2008;57:714–723.
76. Afkarian M, Polsky S, Parsa A, et al. Preventing Early Renal Loss in Diabetes (PERL) Study: a randomized double-blinded trial of allopurinol-rationale, design, and baseline data.
Diabetes Care 2019;42:1454–1463.
77. Klisic J, Nief V, Reyes L, Ambuhl PM. Acute and chronic regulation of the renal Na/H+ exchanger NHE3 in rats with STZ-induced diabetes mellitus.
Nephron Physiol 2006;102:p27–p35.
78. Gunawardana SC, Head WS, Piston DW. Dimethyl amiloride improves glucose homeostasis in mouse models of type 2 diabetes.
Am J Physiol Endocrinol Metab 2008;294:E1097–E1108.
79. Persson P, Hansell P, Palm F. NADPH oxidase inhibition reduces tubular sodium transport and improves kidney oxygenation in diabetes.
Am J Physiol Regul Integr Comp Physiol 2012;302:R1443–R1449.
80. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease.
N Engl J Med 2020;383:1436–1446.
81. Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes.
N Engl J Med 2019;380:347–357.
82. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.
N Engl J Med 2019;380:2295–2306.
83. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes.
N Engl J Med 2016;375:323–334.
84. Pergola PE, Raskin P, Toto RD, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes.
N Engl J Med 2011;365:327–336.
85. Pergola PE, Krauth M, Huff JW, et al. Effect of bardoxolone methyl on kidney function in patients with T2D and stage 3b-4 CKD.
Am J Nephrol 2011;33:469–476.
86. Golbidi S, Ebadi SA, Laher I. Antioxidants in the treatment of diabetes.
Curr Diabetes Rev 2011;7:106–125.
87. Liu S, Lee IM, Song Y, et al. Vitamin E and risk of type 2 diabetes in the women’s health study randomized controlled trial.
Diabetes 2006;55:2856–2862.
88. Laddha AP, Kulkarni YA. NADPH oxidase: a membrane-bound enzyme and its inhibitors in diabetic complications.
Eur J Pharmacol 2020;881:173206.
89. Elbatreek MH, Pachado MP, Cuadrado A, Jandeleit-Dahm K, Schmidt HH. Reactive oxygen comes of age: mechanism-based therapy of diabetic end-organ damage.
Trends Endocrinol Metab 2019;30:312–327.
90. Laleu B, Gaggini F, Orchard M, et al. First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis.
J Med Chem 2010;53:7715–7730.
91. Joo JH, Oh H, Kim M, et al. NADPH oxidase 1 activity and ROS generation are regulated by Grb2/Cbl-mediated proteasomal degradation of NoxO1 in colon cancer cells.
Cancer Res 2016;76:855–865.