1. Ruiz-Ortega M, Rupérez M, Esteban V, et al. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases.
Nephrol Dial Transplant 2006;21:16–20.
3. Forrester SJ, Booz GW, Sigmund CD, et al. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology.
Physiol Rev 2018;98:1627–1738.
4. Ding G, Reddy K, Kapasi AA, et al. Angiotensin II induces apoptosis in rat glomerular epithelial cells.
Am J Physiol Renal Physiol 2002;283:F173–F180.
5. Park HY, Seong SB, Min SY, Ha TS. CD2-associated protein/phosphoinositide 3-kinase signaling has a preventive role in angiotensin II-induced podocyte apoptosis.
Int J Biochem Cell Biol 2016;79:370–381.
6. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.
Circ Res 1994;74:1141–1148.
7. Rajagopalan S, Kurz S, Münzel T, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone.
J Clin Invest 1996;97:1916–1923.
8. Jones SA, O’Donnell VB, Wood JD, Broughton JP, Hughes EJ, Jones OT. Expression of phagocyte NADPH oxidase components in human endothelial cells.
Am J Physiol 1996;271:H1626–H1634.
9. Radeke HH, Cross AR, Hancock JT, et al. Functional expression of NADPH oxidase components (alpha- and beta-subunits of cytochrome b558 and 45-kDa flavoprotein) by intrinsic human glomerular mesangial cells.
J Biol Chem 1991;266:21025–21029.
10. Greiber S, Münzel T, Kästner S, Müller B, Schollmeyer P, Pavenstädt H. NAD(P)H oxidase activity in cultured human podocytes: effects of adenosine triphosphate.
Kidney Int 1998;53:654–663.
11. Che G, Gao H, Hu Q, Xie H, Zhang Y. Angiotensin II promotes podocyte injury by activating Arf6-Erk1/2-Nox4 signaling pathway.
PLoS One 2020;15:e0229747.
12. Cui XL, Douglas JG. Arachidonic acid activates c-jun N-terminal kinase through NADPH oxidase in rabbit proximal tubular epithelial cells.
Proc Natl Acad Sci U S A 1997;94:3771–3776.
13. Sedeek M, Callera G, Montezano A, et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy.
Am J Physiol Renal Physiol 2010;299:F1348–F1358.
14. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis.
Free Radic Biol Med 2010;48:749–762.
15. Ha TS. Roles of adaptor proteins in podocyte biology.
World J Nephrol 2013;2:1–10.
16. Scott RP, Quaggin SE. Review series: the cell biology of renal filtration.
J Cell Biol 2015;209:199–210.
17. Nath KA, Fischereder M, Hostetter TH. The role of oxidants in progressive renal injury.
Kidney Int Suppl 1994;45:S111–S115.
18. Johnson RJ, Lovett D, Lehrer RI, Couser WG, Klebanoff SJ. Role of oxidants and proteases in glomerular injury.
Kidney Int 1994;45:352–359.
19. Mundel P, Reiser J, Zúñiga Mejía Borja A, et al. Rearrangements of the cytoskeleton and cell contacts induce process formation during differentiation of conditionally immortalized mouse podocyte cell lines.
Exp Cell Res 1997;236:248–258.
20. Forman HJ, Williams JJ, Nelson J, Daniele RP, Fisher AB. Hyperoxia inhibits stimulated superoxide release by rat alveolar macrophages.
J Appl Physiol Respir Environ Exerc Physiol 1982;53:685–689.
21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent.
J Biol Chem 1951;193:265–275.
25. Wennmann DO, Hsu HH, Pavenstädt H. The renin-angiotensin-aldosterone system in podocytes.
Semin Nephrol 2012;32:377–384.
27. Gill PS, Wilcox CS. NADPH oxidases in the kidney.
Antioxid Redox Signal 2006;8:1597–1607.
28. Anderson M, Roshanravan H, Khine J, Dryer SE. Angiotensin II activation of TRPC6 channels in rat podocytes requires generation of reactive oxygen species.
J Cell Physiol 2014;229:434–442.
29. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1990;186:1–85.
30. Gao N, Wang H, Zhang X, Yang Z. The inhibitory effect of angiotensin II on BKCa channels in podocytes via oxidative stress.
Mol Cell Biochem 2015;398:217–222.
31. Rajaram RD, Dissard R, Jaquet V, de Seigneux S. Potential benefits and harms of NADPH oxidase type 4 in the kidneys and cardiovascular system.
Nephrol Dial Transplant 2019;34:567–576.
32. Sedeek M, Nasrallah R, Touyz RM, Hébert RL. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe.
J Am Soc Nephrol 2013;24:1512–1518.
33. Yuzefovych LV, LeDoux SP, Wilson GL, Rachek LI. Mitochondrial DNA damage via augmented oxidative stress regulates endoplasmic reticulum stress and autophagy: crosstalk, links and signaling.
PLoS One 2013;8:e83349.
34. Yuan Y, Xu X, Zhao C, et al. The roles of oxidative stress, endoplasmic reticulum stress, and autophagy in aldosterone/mineralocorticoid receptor-induced podocyte injury.
Lab Invest 2015;95:1374–1386.