3. Kennedy-Lydon TM, Crawford C, Wildman SS, Peppiatt-Wildman CM. Renal pericytes: regulators of medullary blood flow.
Acta Physiol (Oxf) 2013;207:212–225.
4. Chen CW, Okada M, Proto JD, et al. Human pericytes for ischemic heart repair.
Stem Cells 2013;31:305–316.
5. Meyers CA, Xu J, Zhang L, et al. Early immunomodulatory effects of implanted human perivascular stromal cells during bone formation.
Tissue Eng Part A 2018;24:448–457.
6. Warmke N, Griffin KJ, Cubbon RM. Pericytes in diabetes-associated vascular disease.
J Diabetes Complications 2016;30:1643–1650.
7. Cathery W, Faulkner A, Maselli D, Madeddu P. Concise review: the regenerative journey of pericytes toward clinical translation.
Stem Cells 2018;36:1295–1310.
8. Ferland-McCollough D, Slater S, Richard J, Reni C, Mangialardi G. Pericytes, an overlooked player in vascular pathobiology.
Pharmacol Ther 2017;171:30–42.
9. Lenoir O, Jasiek M, Hénique C, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis.
Autophagy 2015;11:1130–1145.
10. Borza CM, Pozzi A. The role of cell-extracellular matrix interactions in glomerular injury.
Exp Cell Res 2012;318:1001–1010.
11. van Dijk CG, Nieuweboer FE, Pei JY, et al. The complex mural cell: pericyte function in health and disease.
Int J Cardiol 2015;190:75–89.
12. Wu CF, Chiang WC, Lai CF, et al. Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis.
Am J Pathol 2013;182:118–131.
13. Ren S, Duffield JS. Pericytes in kidney fibrosis.
Curr Opin Nephrol Hypertens 2013;22:471–480.
14. Humphreys BD. Targeting pericyte differentiation as a strategy to modulate kidney fibrosis in diabetic nephropathy.
Semin Nephrol 2012;32:463–470.
15. Fernández Fernández B, Elewa U, Sánchez-Niño MD, et al. 2012 Update on diabetic kidney disease: the expanding spectrum, novel pathogenic insights and recent clinical trials.
Minerva Med 2012;103:219–234.
16. Inoguchi T, Sonta T, Tsubouchi H, et al. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase.
J Am Soc Nephrol 2003;14:S227–S232.
17. Koya D, Haneda M, Nakagawa H, et al. Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes.
FASEB J 2000;14:439–447.
18. Chiaverina G, di Blasio L, Monica V, et al. Dynamic interplay between pericytes and endothelial cells during sprouting angiogenesis.
Cells 2019;8:1109.
19. Zhang Y, Nakano D, Guan Y, et al. A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor-dependent pathway after renal injury in mice.
Kidney Int 2018;94:524–535.
21. Rangasamy S, Monickaraj F, Legendre C, et al. Transcriptomics analysis of pericytes from retinas of diabetic animals reveals novel genes and molecular pathways relevant to blood-retinal barrier alterations in diabetic retinopathy.
Exp Eye Res 2020;195:108043.
22. Trost A, Bruckner D, Rivera FJ, Reitsamer HA. Pericytes in the retina.
Adv Exp Med Biol 2019;1122:1–26.
24. Kida Y, Duffield JS. Pivotal role of pericytes in kidney fibrosis.
Clin Exp Pharmacol Physiol 2011;38:467–473.
25. Souma T, Nezu M, Nakano D, et al. Erythropoietin synthesis in renal myofibroblasts is restored by activation of hypoxia signaling.
J Am Soc Nephrol 2016;27:428–438.
26. Nakagawa N, Xin C, Roach AM, et al. Dicer1 activity in the stromal compartment regulates nephron differentiation and vascular patterning during mammalian kidney organogenesis.
Kidney Int 2015;87:1125–1140.
27. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis.
Cell 2011;146:873–887.
28. Simonavicius N, Ashenden M, van Weverwijk A, et al. Pericytes promote selective vessel regression to regulate vascular patterning.
Blood 2012;120:1516–1527.
29. Zhong F, Chen H, Wei C, et al. Reduced Krüppel-like factor 2 expression may aggravate the endothelial injury of diabetic nephropathy.
Kidney Int 2015;87:382–395.
31. Sun KH, Chang Y, Reed NI, Sheppard D. α-Smooth muscle actin is an inconsistent marker of fibroblasts responsible for force-dependent TGFβ activation or collagen production across multiple models of organ fibrosis.
Am J Physiol Lung Cell Mol Physiol 2016;310:L824–L836.
32. Kida Y, Ieronimakis N, Schrimpf C, Reyes M, Duffield JS. EphrinB2 reverse signaling protects against capillary rarefaction and fibrosis after kidney injury.
J Am Soc Nephrol 2013;24:559–572.
33. Lin SL, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney.
Am J Pathol 2008;173:1617–1627.
34. Schrimpf C, Xin C, Campanholle G, et al. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury.
J Am Soc Nephrol 2012;23:868–883.
35. Birbrair A. Pericyte biology: development, homeostasis, and disease.
Adv Exp Med Biol 2018;1109:1–3.
36. Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis.
Am J Pathol 2010;176:85–97.
37. Chen YT, Chang FC, Wu CF, et al. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis.
Kidney Int 2011;80:1170–1181.
38. Ren S, Johnson BG, Kida Y, et al. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1.
Proc Natl Acad Sci U S A 2013;110:1440–1445.