1. Chen TK, Knicely DH, Grams ME. Chronic kidney disease diagnosis and management: a review.
JAMA 2019;322:1294–1304.
2. Tuttle KR, Jones CR, Daratha KB, et al. Incidence of chronic kidney disease among adults with diabetes, 2015-2020.
N Engl J Med 2022;387:1430–1431.
3. Murphy D, McCulloch CE, Lin F, et al. Trends in prevalence of chronic kidney disease in the United States.
Ann Intern Med 2016;165:473–481.
4. Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey.
Lancet 2012;379:815–822.
6. Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease: a systematic review and meta-analysis.
PLoS One 2016;11:e0158765.
7. Chevalier RL, Forbes MS, Thornhill BA. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy.
Kidney Int 2009;75:1145–1152.
9. Abbas NA, El Salem A, Awad MM. Empagliflozin, SGLT2 inhibitor, attenuates renal fibrosis in rats exposed to unilateral ureteric obstruction: potential role of klotho expression.
Naunyn Schmiedebergs Arch Pharmacol 2018;391:1347–1360.
10. Bianco M, Lopes JA, Beiral HJ, et al. The contralateral kidney presents with impaired mitochondrial functions and disrupted redox homeostasis after 14 days of unilateral ureteral obstruction in mice.
PLoS One 2019;14:e0218986.
12. Xiong Y, Chang Y, Hao J, et al. Eplerenone attenuates fibrosis in the contralateral kidney of UUO rats by preventing macrophage-to-myofibroblast transition.
Front Pharmacol 2021;12:620433.
13. Xuan MY, Piao SG, Ding J, et al. Dapagliflozin alleviates renal fibrosis by inhibiting RIP1-RIP3-MLKL-mediated necroinflammation in unilateral ureteral obstruction.
Front Pharmacol 2021;12:798381.
14. Zhao HY, Li HY, Jin J, et al. L-carnitine treatment attenuates renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction.
Korean J Intern Med 2021;36:S180–S195.
15. Woo S, Cho JY, Kim SY, Kim SH. Intravoxel incoherent motion MRI-derived parameters and T2* relaxation time for noninvasive assessment of renal fibrosis: an experimental study in a rabbit model of unilateral ureter obstruction.
Magn Reson Imaging 2018;51:104–112.
16. Bhangdia DK, Gulmi FA, Chou SY, Mooppan UM, Kim H. Alterations of renal hemodynamics in unilateral ureteral obstruction mediated by activation of endothelin receptor subtypes.
J Urol 2003;170:2057–2062.
17. Wang H, Wang B, Zhang A, et al. Exosome-mediated miR-29 transfer reduces muscle atrophy and kidney fibrosis in mice.
Mol Ther 2019;27:571–583.
19. Wang J, Zhu H, Huang L, et al. Nrf2 signaling attenuates epithelial-to-mesenchymal transition and renal interstitial fibrosis via PI3K/Akt signaling pathways.
Exp Mol Pathol 2019;111:104296.
21. Lee J, Hwang I, Lee JH, Lee HW, Jeong LS, Ha H. The selective A3AR antagonist LJ-1888 ameliorates UUO-induced tubulointerstitial fibrosis.
Am J Pathol 2013;183:1488–1497.
22. Chen Z, Wu S, Zeng Y, et al. FuZhengHuaYuJiangZhuTongLuoFang prescription modulates gut microbiota and gut-derived metabolites in UUO rats.
Front Cell Infect Microbiol 2022;12:837205.
24. Jiang YJ, Jin J, Nan QY, et al. Coenzyme Q10 attenuates renal fibrosis by inhibiting RIP1-RIP3-MLKL-mediated necroinflammation via Wnt3α/β-catenin/GSK-3β signaling in unilateral ureteral obstruction.
Int Immunopharmacol 2022;108:108868.
25. Pimentel JL, Montero A, Wang S, Yosipiv I, el-Dahr S, Martínez-Maldonado M. Sequential changes in renal expression of renin-angiotensin system genes in acute unilateral ureteral obstruction.
Kidney Int 1995;48:1247–1253.
26. el-Dahr SS, Gee J, Dipp S, Hanss BG, Vari RC, Chao J. Upregulation of renin-angiotensin system and downregulation of kallikrein in obstructive nephropathy.
Am J Physiol 1993;264:F874–F881.
27. Zou J, Zhou X, Ma Y, Yu R. Losartan ameliorates renal interstitial fibrosis through metabolic pathway and Smurfs-TGF-β/Smad.
Biomed Pharmacother 2022;149:112931.
28. Kim H, Baek CH, Lee RB, Chang JW, Yang WS, Lee SK. Anti-fibrotic effect of losartan, an angiotensin II receptor blocker, is mediated through inhibition of ER stress via up-regulation of SIRT1, followed by induction of HO-1 and thioredoxin.
Int J Mol Sci 2017;18:305.
29. Sun N, Zhai L, Li H, Shi LH, Yao Z, Zhang B. Angiotensin-converting enzyme inhibitor (ACEI)-mediated amelioration in renal fibrosis involves suppression of mast cell degranulation.
Kidney Blood Press Res 2016;41:108–118.
30. Ding J, Cui S, Li SY, et al. The angiotensin receptor neprilysin inhibitor LCZ696 attenuates renal fibrosis via ASK1/JNK/p38 MAPK-mediated apoptosis in unilateral ureteral obstruction.
PLoS One 2023;18:e0286903.
31. Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Pedraza-Chaverri J. Mitochondrial redox signaling and oxidative stress in kidney diseases.
Biomolecules 2021;11:1144.
32. Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Ortega-Lozano AJ, Pedraza-Chaverri J. Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis.
Free Radic Biol Med 2021;172:65–81.
33. Martínez-Klimova E, Aparicio-Trejo OE, Gómez-Sierra T, Jiménez-Uribe AP, Bellido B, Pedraza-Chaverri J. Mitochondrial dysfunction and endoplasmic reticulum stress in the promotion of fibrosis in obstructive nephropathy induced by unilateral ureteral obstruction.
Biofactors 2020;46:716–733.
34. Kaeidi A, Taghipour Z, Allahtavakoli M, Fatemi I, Hakimizadeh E, Hassanshahi J. Ameliorating effect of troxerutin in unilateral ureteral obstruction induced renal oxidative stress, inflammation, and apoptosis in male rats.
Naunyn Schmiedebergs Arch Pharmacol 2020;393:879–888.
35. Kawada N, Moriyama T, Ando A, et al. Increased oxidative stress in mouse kidneys with unilateral ureteral obstruction.
Kidney Int 1999;56:1004–1013.
36. Nilsson L, Madsen K, Krag S, Frøkiær J, Jensen BL, Nørregaard R. Disruption of cyclooxygenase type 2 exacerbates apoptosis and renal damage during obstructive nephropathy.
Am J Physiol Renal Physiol 2015;309:F1035–F1048.
37. Wu M, Li R, Hou Y, et al. Thioredoxin-interacting protein deficiency ameliorates kidney inflammation and fibrosis in mice with unilateral ureteral obstruction.
Lab Invest 2018;98:1211–1224.
38. Wyczanska M, Lange-Sperandio B. DAMPs in unilateral ureteral obstruction.
Front Immunol 2020;11:581300.
40. Wynn TA. Cellular and molecular mechanisms of fibrosis.
J Pathol 2008;214:199–210.
41. Chi HH, Hua KF, Lin YC, et al. IL-36 signaling facilitates activation of the NLRP3 inflammasome and IL-23/IL-17 axis in renal inflammation and fibrosis.
J Am Soc Nephrol 2017;28:2022–2037.
42. Wei J, Xu Z, Yan X. The role of the macrophage-to-myofibroblast transition in renal fibrosis.
Front Immunol 2022;13:934377.
44. Gifford CC, Tang J, Costello A, et al. Negative regulators of TGF-β1 signaling in renal fibrosis: pathological mechanisms and novel therapeutic opportunities.
Clin Sci (Lond) 2021;135:275–303.
45. Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death.
Immunol Rev 2011;243:206–214.
46. Priante G, Gianesello L, Ceol M, Del Prete D, Anglani F. Cell death in the kidney.
Int J Mol Sci 2019;20:3598.
47. Zhao XC, Livingston MJ, Liang XL, Dong Z. Cell apoptosis and autophagy in renal fibrosis.
Adv Exp Med Biol 2019;1165:557–584.
49. Huber TB, Edelstein CL, Hartleben B, et al. Emerging role of autophagy in kidney function, diseases and aging.
Autophagy 2012;8:1009–1031.
50. Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016;12:1–222.
51. Tagawa A, Yasuda M, Kume S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy.
Diabetes 2016;65:755–767.
53. Livingston MJ, Ding HF, Huang S, Hill JA, Yin XM, Dong Z. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction.
Autophagy 2016;12:976–998.
54. Bernard M, Dieudé M, Yang B, Hamelin K, Underwood K, Hébert MJ. Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF.
Autophagy 2014;10:2193–2207.
55. Galvan DL, Green NH, Danesh FR. The hallmarks of mitochondrial dysfunction in chronic kidney disease.
Kidney Int 2017;92:1051–1057.
56. Choi ME, Price DR, Ryter SW, Choi AM. Necroptosis: a crucial pathogenic mediator of human disease.
JCI Insight 2019;4:e128834.
57. Mulay SR, Linkermann A, Anders HJ. Necroinflammation in kidney disease.
J Am Soc Nephrol 2016;27:27–39.
58. Kundert F, Platen L, Iwakura T, Zhao Z, Marschner JA, Anders HJ. Immune mechanisms in the different phases of acute tubular necrosis.
Kidney Res Clin Pract 2018;37:185–196.
59. Mulay SR, Kumar SV, Lech M, Desai J, Anders HJ. How kidney cell death induces renal necroinflammation.
Semin Nephrol 2016;36:162–173.
60. Xu Y, Ma H, Shao J, et al. A role for tubular necroptosis in cisplatin-induced AKI.
J Am Soc Nephrol 2015;26:2647–2658.
61. Yi W, OuYang Q. Adiponectin improves diabetic nephropathy by inhibiting necrotic apoptosis.
Arch Med Sci 2019;15:1321–1328.
64. Langham RG, Egan MK, Dowling JP, Gilbert RE, Thomson NM. Transforming growth factor-beta1 and tumor growth factor-beta-inducible gene-H3 in nonrenal transplant cyclosporine nephropathy.
Transplantation 2001;72:1826–1829.
65. Zhang LY, Jin J, Luo K, et al. Shen-Kang protects against tacrolimus-induced renal injury.
Korean J Intern Med 2019;34:1078–1090.
67. Zhang Y, Zou J, Tolbert E, Zhao TC, Bayliss G, Zhuang S. Identification of histone deacetylase 8 as a novel therapeutic target for renal fibrosis.
FASEB J 2020;34:7295–7310.
69. Hubers SA, Brown NJ. Combined angiotensin receptor antagonism and neprilysin inhibition.
Circulation 2016;133:1115–1124.
70. Judge P, Haynes R, Landray MJ, Baigent C. Neprilysin inhibition in chronic kidney disease.
Nephrol Dial Transplant 2015;30:738–743.
71. Packer M, Claggett B, Lefkowitz MP, et al. Effect of neprilysin inhibition on renal function in patients with type 2 diabetes and chronic heart failure who are receiving target doses of inhibitors of the renin-angiotensin system: a secondary analysis of the PARADIGM-HF trial.
Lancet Diabetes Endocrinol 2018;6:547–554.
73. Jing W, Vaziri ND, Nunes A, et al. LCZ696 (Sacubitril/valsartan) ameliorates oxidative stress, inflammation, fibrosis and improves renal function beyond angiotensin receptor blockade in CKD.
Am J Transl Res 2017;9:5473–5484.
74. Miyazawa T, Burdeos GC, Itaya M, Nakagawa K, Miyazawa T. Vitamin E: regulatory redox interactions.
IUBMB Life 2019;71:430–441.
75. Tasanarong A, Kongkham S, Duangchana S, Thitiarchakul S, Eiam-Ong S. Vitamin E ameliorates renal fibrosis by inhibition of TGF-beta/Smad2/3 signaling pathway in UUO mice.
J Med Assoc Thai 2011;94 Suppl 7:S1–S9.
76. Cai Y, Huang C, Zhou M, et al. Role of curcumin in the treatment of acute kidney injury: research challenges and opportunities.
Phytomedicine 2022;104:154306.
77. Futuhi F, Naghibzadeh Tahami A, Azmandian J, Saber A. The effects of curcumin-containing supplementations on inflammatory markers and lipid profiles in patients with chronic kidney diseases: a systematic review and meta-analysis of randomized controlled trials.
J Complement Integr Med 2022;19:531–541.
79. Fan Y, Chen H, Peng H, Huang F, Zhong J, Zhou J. Molecular mechanisms of curcumin renoprotection in experimental acute renal injury.
Front Pharmacol 2017;8:912.
81. Wang Z, Chen Z, Li B, et al. Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-кB and PI3K/AKT signalling pathways.
Pharm Biol 2020;58:828–837.
82. Tepel M, Zidek W. N-Acetylcysteine in nephrology: contrast nephropathy and beyond.
Curr Opin Nephrol Hypertens 2004;13:649–654.
84. Nogueira GB, Punaro GR, Oliveira CS, et al. N-acetylcysteine protects against diabetic nephropathy through control of oxidative and nitrosative stress by recovery of nitric oxide in rats.
Nitric Oxide 2018;78:22–31.
86. Mende CW. Chronic kidney disease and SGLT2 inhibitors: a review of the evolving treatment landscape.
Adv Ther 2022;39:148–164.
87. Verma S, McMurray JJ. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review.
Diabetologia 2018;61:2108–2117.
88. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes.
N Engl J Med 2017;377:644–657.
89. Nistala R, Savin V. Diabetes, hypertension, and chronic kidney disease progression: role of DPP4.
Am J Physiol Renal Physiol 2017;312:F661–F670.
90. Lee JW, Chou CL, Knepper MA. Deep sequencing in microdissected renal tubules identifies nephron segment-specific transcriptomes.
J Am Soc Nephrol 2015;26:2669–2677.
91. Eun Lee J, Kim JE, Lee MH, et al. DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury.
Lab Invest 2016;96:547–560.
92. Min HS, Kim JE, Lee MH, et al. Dipeptidyl peptidase IV inhibitor protects against renal interstitial fibrosis in a mouse model of ureteral obstruction.
Lab Invest 2014;94:598–607.
93. Giudetti AM, Stanca E, Siculella L, Gnoni GV, Damiano F. Nutritional and hormonal regulation of citrate and carnitine/acylcarnitine transporters: two mitochondrial carriers involved in fatty acid metabolism.
Int J Mol Sci 2016;17:817.
94. Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation.
Biochim Biophys Acta 2016;1863:2422–2435.
95. Adeva-Andany MM, Calvo-Castro I, Fernández-Fernández C, Donapetry-García C, Pedre-Piñeiro AM. Significance of l-carnitine for human health.
IUBMB Life 2017;69:578–594.
96. Negida A, Menshawy A, El Ashal G, et al. Coenzyme Q10 for patients with Parkinson’s disease: a systematic review and meta-analysis.
CNS Neurol Disord Drug Targets 2016;15:45–53.
98. Cui S, Luo K, Quan Y, et al. Water-soluble coenzyme Q10 provides better protection than lipid-soluble coenzyme Q10 in a rat model of chronic tacrolimus nephropathy.
Korean J Intern Med 2021;36:949–961.