1. Menon S, Symons JM, Selewski DT. Acute kidney injury.
Pediatr Rev 2023;44:265–279.
2. Mehta RL, Cerdá J, Burdmann EA, et al. International Society of Nephrology\'s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology.
Lancet 2015;385:2616–2643.
3. Jiang M, Bai M, Lei J, et al. Mitochondrial dysfunction and the AKI-to-CKD transition.
Am J Physiol Renal Physiol 2020;319:F1105–F1116.
4. Kurzhagen JT, Dellepiane S, Cantaluppi V, Rabb H. AKI: an increasingly recognized risk factor for CKD development and progression.
J Nephrol 2020;33:1171–1187.
5. See EJ, Jayasinghe K, Glassford N, et al. Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure.
Kidney Int 2019;95:160–172.
6. Wang L, Xu X, Zhang M, et al. Prevalence of chronic kidney disease in China: results from the sixth China Chronic Disease and Risk Factor Surveillance.
JAMA Intern Med 2023;183:298–310.
7. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities.
Cell 2017;169:985–999.
9. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases.
Dev Cell 2009;17:9–26.
10. Kim NH, Kim HS, Kim NG, et al. p53 and microRNA-34 are suppressors of canonical Wnt signaling.
Sci Signal 2011;4:ra71.
11. Cha YH, Kim NH, Park C, Lee I, Kim HS, Yook JI. MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling.
Cell Cycle 2012;11:1273–1281.
12. Han D, Xu Y, Peng WP, et al. Citrus alkaline extracts inhibit senescence of A549 cells to alleviate pulmonary fibrosis via the β-catenin/P53 pathway.
Med Sci Monit 2021;27:e928547.
14. Sheng J, He X, Yu W, et al. p53-targeted lncRNA ST7-AS1 acts as a tumour suppressor by interacting with PTBP1 to suppress the Wnt/β-catenin signalling pathway in glioma.
Cancer Lett 2021;503:54–68.
16. Gu Z, Tan W, Feng G, et al. Wnt/β-catenin signaling mediates the senescence of bone marrow-mesenchymal stem cells from systemic lupus erythematosus patients through the p53/p21 pathway.
Mol Cell Biochem 2014;387:27–37.
17. Lee KH, Li M, Michalowski AM, et al. A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells.
Proc Natl Acad Sci U S A 2010;107:69–74.
18. Wang Q, Zou Y, Nowotschin S, et al. The p53 family coordinates Wnt and nodal inputs in mesendodermal differentiation of embryonic stem cells.
Cell Stem Cell 2017;20:70–86.
19. Sadot E, Geiger B, Oren M, Ben-Ze’ev A. Down-regulation of beta-catenin by activated p53.
Mol Cell Biol 2001;21:6768–6781.
20. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome.
Cell 1982;31:99–109.
21. Tanneberger K, Pfister AS, Kriz V, Bryja V, Schambony A, Behrens J. Structural and functional characterization of the Wnt inhibitor APC membrane recruitment 1 (Amer1).
J Biol Chem 2011;286:19204–19214.
22. Liu C, Li Y, Semenov M, et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism.
Cell 2002;108:837–847.
23. van Noort M, van de Wetering M, Clevers H. Identification of two novel regulated serines in the N terminus of beta-catenin.
Exp Cell Res 2002;276:264–272.
24. Wang Y, Zhou CJ, Liu Y. Wnt signaling in kidney development and disease.
Prog Mol Biol Transl Sci 2018;153:181–207.
25. Ma L, Wang HY. Mitogen-activated protein kinase p38 regulates the Wnt/cyclic GMP/Ca2+ non-canonical pathway.
J Biol Chem 2007;282:28980–28990.
26. Terada Y, Tanaka H, Okado T, et al. Expression and function of the developmental gene Wnt-4 during experimental acute renal failure in rats.
J Am Soc Nephrol 2003;14:1223–1233.
27. Lin SL, Li B, Rao S, et al. Macrophage Wnt7b is critical for kidney repair and regeneration.
Proc Natl Acad Sci U S A 2010;107:4194–4199.
28. Wang Z, Havasi A, Gall JM, Mao H, Schwartz JH, Borkan SC. Beta-catenin promotes survival of renal epithelial cells by inhibiting Bax.
J Am Soc Nephrol 2009;20:1919–1928.
29. Xiao L, Zhou D, Tan RJ, et al. Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression.
J Am Soc Nephrol 2016;27:1727–1740.
30. Nlandu-Khodo S, Osaki Y, Scarfe L, et al. Tubular β-catenin and FoxO3 interactions protect in chronic kidney disease.
JCI Insight 2020;5:e135454.
31. Zhou L, Mo H, Miao J, et al. Klotho ameliorates kidney injury and fibrosis and normalizes blood pressure by targeting the renin-angiotensin system.
Am J Pathol 2015;185:3211–3223.
32. Zhou T, He X, Cheng R, et al. Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy.
Diabetologia 2012;55:255–266.
33. Xiao L, Wang M, Yang S, Liu F, Sun L. A glimpse of the pathogenetic mechanisms of Wnt/β-catenin signaling in diabetic nephropathy.
Biomed Res Int 2013;2013:987064.
34. Li Q, Chen C, Chen X, Han M, Li J. Dexmedetomidine attenuates renal fibrosis via α2-adrenergic receptor-dependent inhibition of cellular senescence after renal ischemia/reperfusion.
Life Sci 2018;207:1–8.
35. Dai C, Stolz DB, Kiss LP, Monga SP, Holzman LB, Liu Y. Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria.
J Am Soc Nephrol 2009;20:1997–2008.
36. Kato H, Gruenwald A, Suh JH, et al. Wnt/β-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival.
J Biol Chem 2011;286:26003–26015.
37. Wang XD, Huang XF, Yan QR, Bao CD. Aberrant activation of the WNT/β-catenin signaling pathway in lupus nephritis.
PLoS One 2014;9:e84852.
38. Surendran K, Schiavi S, Hruska KA. Wnt-dependent beta-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis.
J Am Soc Nephrol 2005;16:2373–2384.
39. Hao S, He W, Li Y, et al. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis.
J Am Soc Nephrol 2011;22:1642–1653.
40. Zhou D, Li Y, Lin L, Zhou L, Igarashi P, Liu Y. Tubule-specific ablation of endogenous β-catenin aggravates acute kidney injury in mice.
Kidney Int 2012;82:537–547.
41. Feng Y, Ren J, Gui Y, et al. Wnt/β-catenin-promoted macrophage alternative activation contributes to kidney fibrosis.
J Am Soc Nephrol 2018;29:182–193.
42. Joiner DM, Ke J, Zhong Z, Xu HE, Williams BO. LRP5 and LRP6 in development and disease.
Trends Endocrinol Metab 2013;24:31–39.
43. Schunk SJ, Floege J, Fliser D, Speer T. WNT-β-catenin signalling: a versatile player in kidney injury and repair.
Nat Rev Nephrol 2021;17:172–184.
45. Kuncewitch M, Yang WL, Corbo L, et al. WNT agonist decreases tissue damage and improves renal function after ischemia-reperfusion.
Shock 2015;43:268–275.
46. He W, Dai C, Li Y, Zeng G, Monga SP, Liu Y. Wnt/beta-catenin signaling promotes renal interstitial fibrosis.
J Am Soc Nephrol 2009;20:765–776.
47. Jiang L, Xu L, Song Y, et al. Calmodulin-dependent protein kinase II/cAMP response element-binding protein/Wnt/β-catenin signaling cascade regulates angiotensin II-induced podocyte injury and albuminuria.
J Biol Chem 2013;288:23368–23379.
48. Satoh M, Nagasu H, Morita Y, Yamaguchi TP, Kanwar YS, Kashihara N. Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling.
Am J Physiol Renal Physiol 2012;303:F1641–F1651.
49. Zhou L, Li Y, Zhou D, Tan RJ, Liu Y. Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling.
J Am Soc Nephrol 2013;24:771–785.
51. Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and metabolism.
J Mol Cell Biol 2019;11:284–292.
54. Hu W. The role of p53 gene family in reproduction.
Cold Spring Harb Perspect Biol 2009;1:a001073.
55. Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops.
Oncogene 2005;24:2899–2908.
56. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network.
Nature 2000;408:307–310.
57. Karni-Schmidt O, Lokshin M, Prives C. The roles of MDM2 and MDMX in cancer.
Annu Rev Pathol 2016;11:617–644.
58. Kelly KJ, Plotkin Z, Vulgamott SL, Dagher PC. P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor.
J Am Soc Nephrol 2003;14:128–138.
59. Ying Y, Kim J, Westphal SN, Long KE, Padanilam BJ. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury.
J Am Soc Nephrol 2014;25:2707–2716.
60. Yang H, Li R, Zhang L, et al. p53-cyclophilin D mediates renal tubular cell apoptosis in ischemia-reperfusion-induced acute kidney injury.
Am J Physiol Renal Physiol 2019;317:F1311–F1317.
61. Li C, Xie N, Li Y, Liu C, Hou FF, Wang J. N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation.
Free Radic Biol Med 2019;130:512–527.
62. Jiang M, Yi X, Hsu S, Wang CY, Dong Z. Role of p53 in cisplatin-induced tubular cell apoptosis: dependence on p53 transcriptional activity.
Am J Physiol Renal Physiol 2004;287:F1140–F1147.
63. Wei Q, Dong G, Yang T, Megyesi J, Price PM, Dong Z. Activation and involvement of p53 in cisplatin-induced nephrotoxicity.
Am J Physiol Renal Physiol 2007;293:F1282–F1291.
64. Chen G, Xue H, Zhang X, Ding D, Zhang S. p53 inhibition attenuates cisplatin-induced acute kidney injury through microRNA-142-5p regulating SIRT7/NF-κB.
Ren Fail 2022;44:368–380.
65. Zhang D, Liu Y, Wei Q, et al. Tubular p53 regulates multiple genes to mediate AKI.
J Am Soc Nephrol 2014;25:2278–2289.
66. Li X, Zou Y, Fu YY, et al. A-lipoic acid alleviates folic acid-induced renal damage through inhibition of ferroptosis.
Front Physiol 2021;12:680544.
67. Lv W, Xue L, Liang L, et al. Endotoxin induced acute kidney injury modulates expression of AQP1, P53 and P21 in rat kidney, heart, lung and small intestine.
PLoS One 2023;18:e0288507.
68. Zhou L, Fu P, Huang XR, Liu F, Lai KN, Lan HY. Activation of p53 promotes renal injury in acute aristolochic acid nephropathy.
J Am Soc Nephrol 2010;21:31–41.
69. Yuqiang C, Lisha Z, Jiejun W, Qin X, Niansong W. Pifithrin-α ameliorates glycerol induced rhabdomyolysis and acute kidney injury by reducing p53 activation.
Ren Fail 2022;44:473–481.
70. Li H, Wang B, Wu S, et al. Ferroptosis is involved in polymyxin B-induced acute kidney injury via activation of p53.
Chem Biol Interact 2023;378:110479.
72. Dagher PC, Mai EM, Hato T, et al. The p53 inhibitor pifithrin-α can stimulate fibrosis in a rat model of ischemic acute kidney injury.
Am J Physiol Renal Physiol 2012;302:F284–F291.
73. Sutton TA, Hato T, Mai E, et al. p53 is renoprotective after ischemic kidney injury by reducing inflammation.
J Am Soc Nephrol 2013;24:113–124.
74. Molitoris BA, Dagher PC, Sandoval RM, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury.
J Am Soc Nephrol 2009;20:1754–1764.
76. Liu Y, Fu Y, Liu Z, et al. Irisin is induced in renal ischemia-reperfusion to protect against tubular cell injury via suppressing p53.
Biochim Biophys Acta Mol Basis Dis 2020;1866:165792.
77. Wang SY, Xu Y, Hong Q, Chen XM, Cai GY. Mesenchymal stem cells ameliorate cisplatin-induced acute kidney injury via let-7b-5p.
Cell Tissue Res 2023;392:517–533.
78. Che H, He W, Feng J, et al. WWP2 ameliorates acute kidney injury by mediating p53 ubiquitylation and degradation.
Cell Biochem Funct 2020;38:695–701.
79. Yang QH, Liu DW, Long Y, Liu HZ, Chai WZ, Wang XT. Acute renal failure during sepsis: potential role of cell cycle regulation.
J Infect 2009;58:459–464.
81. Cao JY, Wang B, Tang TT, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury.
Theranostics 2021;11:5248–5266.
82. Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z. Autophagy in proximal tubules protects against acute kidney injury.
Kidney Int 2012;82:1271–1283.
83. Periyasamy-Thandavan S, Jiang M, Wei Q, Smith R, Yin XM, Dong Z. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells.
Kidney Int 2008;74:631–640.
84. Sun M, Li J, Mao L, et al. p53 deacetylation alleviates sepsis-induced acute kidney injury by promoting autophagy.
Front Immunol 2021;12:685523.
85. Livingston MJ, Ding HF, Huang S, Hill JA, Yin XM, Dong Z. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction.
Autophagy 2016;12:976–998.
87. Ding Y, Kim SL, Lee SY, Koo JK, Wang Z, Choi ME. Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction.
J Am Soc Nephrol 2014;25:2835–2846.
88. Shi M, Flores B, Gillings N, et al. αKlotho mitigates progression of AKI to CKD through activation of autophagy.
J Am Soc Nephrol 2016;27:2331–2345.
90. Yang J, Chen C, Miao X, et al. Injury site specific xenon delivered by platelet membrane-mimicking hybrid microbubbles to protect against acute kidney injury via inhibition of cellular senescence.
Adv Healthc Mater 2023;12:e2203359.
91. Chen C, Qiu R, Yang J, et al. Lipoxin A4 restores septic renal function via blocking crosstalk between inflammation and premature senescence.
Front Immunol 2021;12:637753.
92. Damalas A, Ben-Ze’ev A, Simcha I, et al. Excess beta-catenin promotes accumulation of transcriptionally active p53.
EMBO J 1999;18:3054–3063.
93. Webster MR, Fane ME, Alicea GM, et al. Paradoxical role for wild-type p53 in driving therapy resistance in melanoma.
Mol Cell 2020;77:633–644.
96. Peixoto EB, Papadimitriou A, Teixeira DA, et al. Reduced LRP6 expression and increase in the interaction of GSK3β with p53 contribute to podocyte apoptosis in diabetes mellitus and are prevented by green tea.
J Nutr Biochem 2015;26:416–430.
97. Wang Y, Li H, Song SP. β-arrestin 1/2 aggravates podocyte apoptosis of diabetic nephropathy via Wnt/β-catenin pathway.
Med Sci Monit 2018;24:1724–1732.
99. Luo C, Zhou S, Zhou Z, et al. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells.
J Am Soc Nephrol 2018;29:1238–1256.