1. GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.
Lancet 2019;393:1958–1972.
2. Guo QH, Zhang YQ, Wang JG. Asian management of hypertension: current status, home blood pressure, and specific concerns in China.
J Clin Hypertens (Greenwich) 2020;22:475–478.
3. Wang Z, Chen Z, Zhang L, et al. Status of hypertension in China: results from the China hypertension survey, 2012-2015.
Circulation 2018;137:2344–2356.
4. Zheng E, Xu J, Xu J, et al. Health-related quality of life and its influencing factors for elderly patients with hypertension: evidence from Heilongjiang Province, China.
Front Public Health 2021;9:654822.
5. Poulter NR, Prabhakaran D, Caulfield M. Hypertension.
Lancet 2015;386:801–812.
6. Al Ghorani H, Götzinger F, Böhm M, Mahfoud F. Arterial hypertension: clinical trials update 2021.
Nutr Metab Cardiovasc Dis 2022;32:21–31.
7. Welling PA. Roles and regulation of renal K channels.
Annu Rev Physiol 2016;78:415–435.
8. Nüsing RM, Pantalone F, Gröne HJ, Seyberth HW, Wegmann M. Expression of the potassium channel ROMK in adult and fetal human kidney.
Histochem Cell Biol 2005;123:553–559.
9. O’Donnell BM, Mackie TD, Subramanya AR, Brodsky JL. Endoplasmic reticulum-associated degradation of the renal potassium channel, ROMK, leads to type II Bartter syndrome.
J Biol Chem 2017;292:12813–12827.
10. Wu P, Gao ZX, Su XT, et al. Role of WNK4 and kidney-specific WNK1 in mediating the effect of high dietary K+ intake on ROMK channel in the distal convoluted tubule.
Am J Physiol Renal Physiol 2018;315:F223–F230.
11. Lu M, Wang T, Yan Q, et al. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter’s) knockout mice.
J Biol Chem 2002;277:37881–37887.
12. Kaufman MB. Pharmaceutical approval update.
P T 2018;43:528–530.
13. Yugandhar VG, Clark MA. Angiotensin III: a physiological relevant peptide of the renin angiotensin system.
Peptides 2013;46:26–32.
14. Shanks J, Ramchandra R. Angiotensin II and the cardiac parasympathetic nervous system in hypertension.
Int J Mol Sci 2021;22:12305.
15. Eckenstaler R, Sandori J, Gekle M, Benndorf RA. Angiotensin II receptor type 1: an update on structure, expression and pathology.
Biochem Pharmacol 2021;192:114673.
17. Milara J, Ballester B, Morell A, et al. JAK2 mediates lung fibrosis, pulmonary vascular remodelling and hypertension in idiopathic pulmonary fibrosis: an experimental study.
Thorax 2018;73:519–529.
18. Momose R, Inami T, Takeuchi K, et al. Combination therapy with pulmonary vasodilatation and JAK2 inhibition for pulmonary hypertension with polycythemia vera.
CJC Open 2022;5:90–92.
19. Wang W, Lu Y, Hu X, et al. Interleukin-22 exacerbates angiotensin II-induced hypertensive renal injury.
Int Immunopharmacol 2022;109:108840.
20. Wei Y, Zavilowitz B, Satlin LM, Wang WH. Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction.
J Biol Chem 2007;282:6455–6462.
21. Zhang SL, Guo J, Moini B, Ingelfinger JR. Angiotensin II stimulates Pax-2 in rat kidney proximal tubular cells: impact on proliferation and apoptosis.
Kidney Int 2004;66:2181–2192.
22. Zhang DD, Zheng JY, Duan XP, Lin DH, Wang WH. ROMK channels are inhibited in the aldosterone-sensitive distal nephron of renal tubule Nedd4-2-deficient mice.
Am J Physiol Renal Physiol 2022;322:F55–F67.
26. van der Wijst J, Tutakhel OA, Bos C, et al. Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling.
Am J Physiol Renal Physiol 2018;315:F110–F122.
27. Akaike N, Hirata A, Kiyohara T, Oyama Y. Neural regulation on the active sodium-potassium transport in hypokalaemic rat skeletal muscles.
J Physiol 1983;341:245–255.
29. Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing.
J Appl Genet 2011;52:413–435.
33. Shao JB, Li Z, Zhang N, Yang F, Gao W, Sun ZG. Hypoxia-inducible factor 1α in combination with vascular endothelial growth factor could predict the prognosis of postoperative patients with oesophageal squamous cell cancer.
Pol J Pathol 2019;70:84–90.
34. Yin H, Ma J, Chen L, et al. MiR-99a enhances the radiation sensitivity of non-small cell lung cancer by targeting mTOR.
Cell Physiol Biochem 2018;46:471–481.
35. Wei Y, Bloom P, Lin D, Gu R, Wang WH. Effect of dietary K intake on apical small-conductance K channel in CCD: role of protein tyrosine kinase.
Am J Physiol Renal Physiol 2001;281:F206–F212.
36. Wei X, Jin J, Wu J, et al. Cardiac-specific BACH1 ablation attenuates pathological cardiac hypertrophy by inhibiting the Ang II type 1 receptor expression and the Ca2+/CaMKII pathway.
Cardiovasc Res 2023;119:1842–1855.
37. Cantero-Navarro E, Fernández-Fernández B, Ramos AM, et al. Renin-angiotensin system and inflammation update.
Mol Cell Endocrinol 2021;529:111254.
38. Polidoro JZ, Rebouças NA, Girardi AC. The angiotensin II type 1 receptor-associated protein attenuates angiotensin II-mediated inhibition of the renal outer medullary potassium channel in collecting duct cells.
Front Physiol 2021;12:642409.
39. Wu P, Gao ZX, Zhang DD, et al. Effect of angiotensin II on ENaC in the distal convoluted tubule and in the cortical collecting duct of mineralocorticoid receptor deficient mice.
J Am Heart Assoc 2020;9:e014996.
40. Nesterov V, Krueger B, Bertog M, Dahlmann A, Palmisano R, Korbmacher C. In liddle syndrome, epithelial sodium channel is hyperactive mainly in the early part of the aldosterone-sensitive distal nephron.
Hypertension 2016;67:1256–1262.