1. Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ. Acute kidney injury.
Nat Rev Dis Primers 2021;7:52.
2. Ronco C, Bellomo R, Kellum JA. Acute kidney injury.
Lancet 2019;394:1949–1964.
4. Tang C, Livingston MJ, Safirstein R, Dong Z. Cisplatin nephrotoxicity: new insights and therapeutic implications.
Nat Rev Nephrol 2023;19:53–72.
5. Wang X, Zhou Y, Wang D, et al. Cisplatin-induced ototoxicity: from signaling network to therapeutic targets.
Biomed Pharmacother 2023;157:114045.
6. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies.
Kidney Int 2008;73:994–1007.
7. Safirstein R, Miller P, Guttenplan JB. Uptake and metabolism of cisplatin by rat kidney.
Kidney Int 1984;25:753–758.
8. Digby JL, Vanichapol T, Przepiorski A, Davidson AJ, Sander V. Evaluation of cisplatin-induced injury in human kidney organoids.
Am J Physiol Renal Physiol 2020;318:F971–F978.
9. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs.
Nat Rev Drug Discov 2005;4:307–320.
10. Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z, Cullen KJ. Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis.
Clin Cancer Res 2006;12:5817–5825.
12. Calvo SE, Mootha VK. The mitochondrial proteome and human disease.
Annu Rev Genomics Hum Genet 2010;11:25–44.
13. Tang C, Cai J, Yin XM, Weinberg JM, Venkatachalam MA, Dong Z. Mitochondrial quality control in kidney injury and repair.
Nat Rev Nephrol 2021;17:299–318.
14. López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C, Valcárcel-Ares MN. Mitochondrial dysfunction and the inflammatory response.
Mitochondrion 2013;13:106–118.
17. Wang S, Chen Y, Wu H, et al. Role of transcription factor EB in mitochondrial dysfunction of cisplatin-induced acute kidney injury.
Int J Mol Sci 2023;24:3028.
18. Bajwa A, Rosin DL, Chroscicki P, et al. Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury.
J Am Soc Nephrol 2015;26:908–925.
21. Tong D, Xu E, Ge R, et al. Aspirin alleviates cisplatin-induced acute kidney injury through the AMPK-PGC-1α signaling pathway.
Chem Biol Interact 2023;380:110536.
22. Baumgartner MR, Almashanu S, Suormala T, et al. The molecular basis of human 3-methylcrotonyl-CoA carboxylase deficiency.
J Clin Invest 2001;107:495–504.
23. Grünert SC, Stucki M, Morscher RJ, et al. 3-methylcrotonyl-CoA carboxylase deficiency: clinical, biochemical, enzymatic and molecular studies in 88 individuals.
Orphanet J Rare Dis 2012;7:31.
24. Liu Y, Yuan Z, Song C. Methylcrotonoyl-CoA carboxylase 2 overexpression predicts an unfavorable prognosis and promotes cell proliferation in breast cancer.
Biomark Med 2019;13:427–436.
25. He J, Mao Y, Huang W, et al. Methylcrotonoyl-CoA carboxylase 2 promotes proliferation, migration and invasion and inhibits apoptosis of prostate cancer cells through regulating GLUD1-P38 MAPK signaling pathway.
Onco Targets Ther 2020;13:7317–7327.
27. Wu D, Zheng Y, Li Y, Peng M, Lin H, Wang K. Exploring the molecular and clinical spectrum of COVID-19-related acute necrotizing encephalopathy in three pediatric cases.
J Hum Genet 2023;68:769–775.
29. Piret SE, Guo Y, Attallah AA, et al. Krüppel-like factor 6-mediated loss of BCAA catabolism contributes to kidney injury in mice and humans.
Proc Natl Acad Sci U S A 2021;118:e2024414118.
31. Dai W, Feng H, Lee D. MCCC2 overexpression predicts poorer prognosis and promotes cell proliferation in colorectal cancer.
Exp Mol Pathol 2020;115:104428.
32. Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury.
Int J Mol Sci 2019;20:3011.
33. Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC. Mitochondrial regulation of cell cycle and proliferation.
Antioxid Redox Signal 2012;16:1150–1180.
34. Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes.
Trends Biochem Sci 2010;35:505–513.
35. Chen MF, Yang CM, Su CM, Hu ML. Vitamin C protects against cisplatin-induced nephrotoxicity and damage without reducing its effectiveness in C57BL/6 mice xenografted with Lewis lung carcinoma.
Nutr Cancer 2014;66:1085–1091.
36. Darwish MA, Abo-Youssef AM, Khalaf MM, Abo-Saif AA, Saleh IG, Abdelghany TM. Vitamin E mitigates cisplatin-induced nephrotoxicity due to reversal of oxidative/nitrosative stress, suppression of inflammation and reduction of total renal platinum accumulation.
J Biochem Mol Toxicol 2017;31:1–9.
39. Yang Y, Liu S, Gao H, et al. Ursodeoxycholic acid protects against cisplatin-induced acute kidney injury and mitochondrial dysfunction through acting on ALDH1L2.
Free Radic Biol Med 2020;152:821–837.
40. Yu B, Jin L, Yao X, et al. TRPM2 protects against cisplatin-induced acute kidney injury and mitochondrial dysfunction via modulating autophagy.
Theranostics 2023;13:4356–4375.
41. Szeto HH. Pharmacologic approaches to improve mitochondrial function in AKI and CKD.
J Am Soc Nephrol 2017;28:2856–2865.
42. Xu L, Xie Q, Qi L, et al. Bcl-2 overexpression reduces cisplatin cytotoxicity by decreasing ER-mitochondrial Ca2+ signaling in SKOV3 cells.
Oncol Rep 2018;39:985–992.
43. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity.
Toxins (Basel) 2010;2:2490–2518.
44. Doke T, Susztak K. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development.
Trends Cell Biol 2022;32:841–853.
46. Kashiwagi Y, Yi H, Liu S, et al. Mitochondrial biogenesis factor PGC-1α suppresses spinal morphine tolerance by reducing mitochondrial superoxide.
Exp Neurol 2021;339:113622.
47. Portilla D, Dai G, McClure T, et al. Alterations of PPARalpha and its coactivator PGC-1 in cisplatin-induced acute renal failure.
Kidney Int 2002;62:1208–1218.
48. Li SY, Susztak K. The role of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in kidney disease.
Semin Nephrol 2018;38:121–126.
49. Liu C, Wang X, Wang X, et al. A new LKB1 activator, piericidin analogue S14, retards renal fibrosis through promoting autophagy and mitochondrial homeostasis in renal tubular epithelial cells.
Theranostics 2022;12:7158–7179.
50. Smith JA, Stallons LJ, Collier JB, Chavin KD, Schnellmann RG. Suppression of mitochondrial biogenesis through toll-like receptor 4-dependent mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling in endotoxin-induced acute kidney injury.
J Pharmacol Exp Ther 2015;352:346–357.
52. Guo Y, Ni J, Chen S, et al. MicroRNA-709 mediates acute tubular injury through effects on mitochondrial function.
J Am Soc Nephrol 2018;29:449–461.
53. Son SM, Park SJ, Lee H, et al. Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A.
Cell Metab 2019;29:192–201.
54. Duan Y, Zheng C, Zhong Y, et al. Beta-hydroxy beta-methyl butyrate decreases muscle protein degradation via increased Akt/FoxO3a signaling and mitochondrial biogenesis in weanling piglets after lipopolysaccharide challenge.
Food Funct 2019;10:5152–5165.
55. Zhong Y, Zeng L, Deng J, Duan Y, Li F. β-hydroxy-β-methylbutyrate (HMB) improves mitochondrial function in myocytes through pathways involving PPARβ/δ and CDK4.
Nutrition 2019;60:217–226.
56. Denoon T, Sunilkumar S, Ford SM. Acetoacetate enhances oxidative metabolism and response to toxicants of cultured kidney cells.
Toxicol Lett 2020;323:19–24.