1. Jongs N, Greene T, Chertow GM, et al. Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial.
Lancet Diabetes Endocrinol 2021;9:755–766.
2. EMPA-KIDNEY Collaborative Group. Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial.
Lancet Diabetes Endocrinol 2024;12:51–60.
3. Jardine M, Zhou Z, Lambers Heerspink HJ, et al. Kidney, Cardiovascular, and safety outcomes of canagliflozin according to baseline albuminuria: a CREDENCE secondary analysis.
Clin J Am Soc Nephrol 2021;16:384–395.
4. DeFronzo RA, Reeves WB, Awad AS. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors.
Nat Rev Nephrol 2021;17:319–334.
5. Marton A, Kaneko T, Kovalik JP, et al. Organ protection by SGLT2 inhibitors: role of metabolic energy and water conservation.
Nat Rev Nephrol 2021;17:65–77.
6. Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC. Cardiorenal protection of SGLT2 inhibitors-perspectives from metabolic reprogramming.
EBioMedicine 2022;83:104215.
8. Jaikumkao K, Pongchaidecha A, Chueakula N, et al. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats.
Diabetes Obes Metab 2018;20:2617–2626.
10. Wheeler DC, Jongs N, Stefansson BV, et al. Safety and efficacy of dapagliflozin in patients with focal segmental glomerulosclerosis: a prespecified analysis of the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial.
Nephrol Dial Transplant 2022;37:1647–1656.
11. Heerspink HJ, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease.
N Engl J Med 2020;383:1436–1446.
13. Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response.
Mol Cell 2010;40:280–293.
15. Hartleben B, Gödel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice.
J Clin Invest 2010;120:1084–1096.
16. Korbut AI, Taskaeva IS, Bgatova NP, et al. SGLT2 inhibitor empagliflozin and DPP4 inhibitor linagliptin reactivate glomerular autophagy in db/db mice, a model of type 2 diabetes.
Int J Mol Sci 2020;21:2987.
17. Yang L, Liang B, Li J, et al. Dapagliflozin alleviates advanced glycation end product induced podocyte injury through AMPK/mTOR mediated autophagy pathway.
Cell Signal 2022;90:110206.
18. Lv X, Wang J, Zhang L, et al. Canagliflozin reverses Th1/Th2 imbalance and promotes podocyte autophagy in rats with membranous nephropathy.
Front Immunol 2022;13:993869.
19. Zhao XY, Li SS, He YX, et al. SGLT2 inhibitors alleviated podocyte damage in lupus nephritis by decreasing inflammation and enhancing autophagy.
Ann Rheum Dis 2023;82:1328–1340.
20. Han E, Shin E, Kim G, et al. Combining SGLT2 inhibition with a thiazolidinedione additively attenuate the very early phase of diabetic nephropathy progression in type 2 diabetes mellitus.
Front Endocrinol (Lausanne) 2018;9:412.
21. Hudkins KL, Li X, Holland AL, Swaminathan S, Alpers CE. Regression of diabetic nephropathy by treatment with empagliflozin in BTBR ob/ob mice.
Nephrol Dial Transplant 2022;37:847–859.
22. Cassis P, Locatelli M, Cerullo D, et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy.
JCI Insight 2018;3:e98720.
23. Oraby MA, El-Yamany MF, Safar MM, Assaf N, Ghoneim HA. Dapagliflozin attenuates early markers of diabetic nephropathy in fructose-streptozotocin-induced diabetes in rats.
Biomed Pharmacother 2019;109:910–920.
24. Klimontov VV, Korbut AI, Taskaeva IS, et al. Empagliflozin alleviates podocytopathy and enhances glomerular nephrin expression in db/db diabetic mice.
World J Diabetes 2020;11:596–610.
26. Ning L, Suleiman HY, Miner JH. Synaptopodin is dispensable for normal podocyte homeostasis but is protective in the context of acute podocyte injury.
J Am Soc Nephrol 2020;31:2815–2832.
27. Ren L, Cui H, Wang Y, et al. The role of lipotoxicity in kidney disease: from molecular mechanisms to therapeutic prospects.
Biomed Pharmacother 2023;161:114465.
28. Szeto HH, Liu S, Soong Y, Alam N, Prusky GT, Seshan SV. Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury.
Kidney Int 2016;90:997–1011.
30. Wallenius K, Kroon T, Hagstedt T, et al. The SGLT2 inhibitor dapagliflozin promotes systemic FFA mobilization, enhances hepatic β-oxidation, and induces ketosis.
J Lipid Res 2022;63:100176.
31. Zhu Q, Zhou Q, Luo XL, Zhang XJ, Li SY. Combination of canagliflozin and puerarin alleviates the lipotoxicity to diabetic kidney in mice.
Korean J Physiol Pharmacol 2023;27:221–230.
32. Wang D, Luo Y, Wang X, et al. The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents renal and liver disease in western diet induced obesity mice.
Int J Mol Sci 2018;19:137.
37. You YH, Quach T, Saito R, Pham J, Sharma K. Metabolomics reveals a key role for fumarate in mediating the effects of NADPH oxidase 4 in diabetic kidney disease.
J Am Soc Nephrol 2016;27:466–481.
38. Feijóo-Bandín S, Aragón-Herrera A, Otero-Santiago M, et al. Role of sodium-glucose co-transporter 2 inhibitors in the regulation of inflammatory processes in animal models.
Int J Mol Sci 2022;23:5634.
39. Xu J, Kitada M, Ogura Y, Liu H, Koya D. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells.
Cells 2021;10:1457.
40. Hou Y, Lin S, Qiu J, et al. NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy.
Biochem Biophys Res Commun 2020;521:791–798.
44. Fang Y, Chen B, Gong AY, et al. The ketone body β-hydroxybutyrate mitigates the senescence response of glomerular podocytes to diabetic insults.
Kidney Int 2021;100:1037–1053.
45. Ferrannini E, Baldi S, Frascerra S, et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes.
Diabetes 2016;65:1190–1195.
46. Tomita I, Kume S, Sugahara S, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition.
Cell Metab 2020;32:404–419.e6.
47. Li J, Liu H, Takagi S, et al. Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules.
JCI Insight 2020;5:e129034.
48. Wang Z, Zhai J, Zhang T, et al. Canagliflozin ameliorates epithelial-mesenchymal transition in high-salt diet-induced hypertensive renal injury through restoration of sirtuin 3 expression and the reduction of oxidative stress.
Biochem Biophys Res Commun 2023;653:53–61.
49. Guo R, Wang P, Zheng X, Cui W, Shang J, Zhao Z. SGLT2 inhibitors suppress epithelial-mesenchymal transition in podocytes under diabetic conditions via downregulating the IGF1R/PI3K pathway.
Front Pharmacol 2022;13:897167.
50. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes.
N Engl J Med 2016;375:323–334.
51. Perkovic V, de Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials.
Lancet Diabetes Endocrinol 2018;6:691–704.
52. Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial.
Lancet Diabetes Endocrinol 2019;7:606–617.
53. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.
N Engl J Med 2019;380:2295–2306.
54. Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis.
Nat Rev Nephrol 2015;11:76–87.
55. Wheeler DC, Stefánsson BV, Jongs N, et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial.
Lancet Diabetes Endocrinol 2021;9:22–31.
56. Rajasekeran H, Reich HN, Hladunewich MA, et al. Dapagliflozin in focal segmental glomerulosclerosis: a combined human-rodent pilot study.
Am J Physiol Renal Physiol 2018;314:F412–F422.
57. Cherney DZ, Dekkers CC, Barbour SJ, et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial.
Lancet Diabetes Endocrinol 2020;8:582–593.
58. Boeckhaus J, Gross O. Sodium-glucose cotransporter-2 inhibitors in patients with hereditary podocytopathies, Alport syndrome, and FSGS: a case series to better plan a large-scale study.
Cells 2021;10:1815.
59. Liu J, Cui J, Fang X, et al. Efficacy and safety of dapagliflozin in children with inherited proteinuric kidney disease: a pilot study.
Kidney Int Rep 2021;7:638–641.
60. Wang H, Li T, Sun F, et al. Safety and efficacy of the SGLT2 inhibitor dapagliflozin in patients with systemic lupus erythematosus: a phase I/II trial.
RMD Open 2022;8:e002686.
61. Wood N, Straw S, Cheng CW, et al. Sodium-glucose cotransporter 2 inhibitors influence skeletal muscle pathology in patients with heart failure and reduced ejection fraction.
Eur J Heart Fail 2024;26:925–935.
62. El-Sayed N, Mostafa YM, AboGresha NM, Ahmed AA, Mahmoud IZ, El-Sayed NM. Dapagliflozin attenuates diabetic cardiomyopathy through erythropoietin up-regulation of AKT/JAK/MAPK pathways in streptozotocin-induced diabetic rats.
Chem Biol Interact 2021;347:109617.