2. Colbert GB, Szerlip HM. Euvolemia: a critical target in the management of acute kidney injury.
Semin Dial 2019;32:30–34.
3. Viau A, Kotsis F, Boehlke C, et al. Divergent function of polycystin 1 and polycystin 2 in cell size regulation.
Biochem Biophys Res Commun 2020;521:290–295.
4. Chapman AB, Devuyst O, Eckardt KU, et al. Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference.
Kidney Int 2015;88:17–27.
5. Harris PC, Hopp K. The mutation, a key determinant of phenotype in ADPKD.
J Am Soc Nephrol 2013;24:868–870.
7. Torres VE, Chapman AB, Devuyst O, et al. Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4:4 Trial.
Nephrol Dial Transplant 2018;33:477–489.
8. Chebib FT, Perrone RD, Chapman AB, et al. A practical guide for treatment of rapidly progressive ADPKD with tolvaptan.
J Am Soc Nephrol 2018;29:2458–2470.
9. Torres VE, Higashihara E, Devuyst O, et al. Effect of tolvaptan in autosomal dominant polycystic kidney disease by CKD stage: results from the TEMPO 3:4 trial.
Clin J Am Soc Nephrol 2016;11:803–811.
10. Schrier RW, Brosnahan G, Cadnapaphornchai MA, et al. Predictors of autosomal dominant polycystic kidney disease progression.
J Am Soc Nephrol 2014;25:2399–2418.
11. Yu ASL, Shen C, Landsittel DP, et al. Baseline total kidney volume and the rate of kidney growth are associated with chronic kidney disease progression in Autosomal Dominant Polycystic Kidney Disease.
Kidney Int 2018;93:691–699.
12. Petzold K, Poster D, Krauer F, et al. Urinary biomarkers at early ADPKD disease stage.
PLoS One 2015;10:e0123555.
13. Messchendorp AL, Meijer E, Boertien WE, et al. Urinary biomarkers to identify autosomal dominant polycystic kidney disease patients with a high likelihood of disease progression.
Kidney Int Rep 2017;3:291–301.
15. Arthur JM, Hill EG, Alge JL, et al. Evaluation of 32 urine biomarkers to predict the progression of acute kidney injury after cardiac surgery.
Kidney Int 2014;85:431–438.
16. Flo TH, Smith KD, Sato S, et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron.
Nature 2004;432:917–921.
17. Berger T, Togawa A, Duncan GS, et al. Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury.
Proc Natl Acad Sci U S A 2006;103:1834–1839.
18. Schmidt-Ott KM, Mori K, Li JY, et al. Dual action of neutrophil gelatinase-associated lipocalin.
J Am Soc Nephrol 2007;18:407–413.
19. Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake.
FEBS Lett 2005;579:773–777.
20. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer.
N Engl J Med 2003;349:427–434.
21. Bolignano D, Donato V, Coppolino G, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage.
Am J Kidney Dis 2008;52:595–605.
22. An S, Zang X, Yuan W, Zhuge Y, Yu Q. Neutrophil gelatinase-associated lipocalin (NGAL) may play a protective role against rats ischemia/reperfusion renal injury via inhibiting tubular epithelial cell apoptosis.
Ren Fail 2013;35:143–149.
23. Wei F, Karihaloo A, Yu Z, et al. Neutrophil gelatinase-associated lipocalin suppresses cyst growth by Pkd1 null cells in vitro and in vivo.
Kidney Int 2008;74:1310–1318.
24. Bolignano D, Coppolino G, Campo S, et al. Neutrophil gelatinase-associated lipocalin in patients with autosomal-dominant polycystic kidney disease.
Am J Nephrol 2007;27:373–378.
25. Cornec-Le Gall E, Olson RJ, Besse W, et al. Monoallelic mutations to DNAJB11 cause atypical autosomal-dominant polycystic kidney disease.
Am J Hum Genet 2018;102:832–844.
26. Porath B, Gainullin VG, Cornec-Le Gall E, et al. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease.
Am J Hum Genet 2016;98:1193–1207.
27. Lee SO, Masyuk T, Splinter P, et al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease.
J Clin Invest 2008;118:3714–3724.
29. Tan YC, Blumenfeld J, Rennert H. Autosomal dominant polycystic kidney disease: genetics, mutations and microRNAs.
Biochim Biophys Acta 2011;1812:1202–1212.
30. Nobakht N, Hanna RM, Al-Baghdadi M, et al. Advances in autosomal dominant polycystic kidney disease: a clinical review.
Kidney Med 2020;2:196–208.
31. Inoue Y, Sohara E, Kobayashi K, et al. Aberrant glycosylation and localization of polycystin-1 cause polycystic kidney in an AQP11 knockout model.
J Am Soc Nephrol 2014;25:2789–2799.
32. Bergmann C. Early and severe polycystic kidney disease and related ciliopathies: an emerging field of interest.
Nephron 2019;141:50–60.
33. Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling.
Cell Signal 2020;72:109649.
34. Hama T, Park F. Heterotrimeric G protein signaling in polycystic kidney disease.
Physiol Genomics 2016;48:429–445.
35. Zhao J, Chen H, Zhang M, et al. Early expression of serum neutrophil gelatinase-associated lipocalin (NGAL) is associated with neurological severity immediately after traumatic brain injury.
J Neurol Sci 2016;368:392–398.
36. Happé H, Peters DJ. Translational research in ADPKD: lessons from animal models.
Nat Rev Nephrol 2014;10:587–601.
37. Harris PC, Torres VE. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease.
J Clin Invest 2014;124:2315–2324.
38. Saigusa T, Bell PD. Molecular pathways and therapies in autosomal-dominant polycystic kidney disease.
Physiology (Bethesda) 2015;30:195–207.
39. Igarashi P, Somlo S. Genetics and pathogenesis of polycystic kidney disease.
J Am Soc Nephrol 2002;13:2384–2398.
40. Blanco G, Wallace DP. Novel role of ouabain as a cystogenic factor in autosomal dominant polycystic kidney disease.
Am J Physiol Renal Physiol 2013;305:F797–F812.
41. Bauvois B, Susin SA. Revisiting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in cancer: saint or sinner?
Cancers (Basel) 2018;10:336.
43. Bundgaard JR, Sengeløv H, Borregaard N, Kjeldsen L. Molecular cloning and expression of a cDNA encoding NGAL: a lipocalin expressed in human neutrophils.
Biochem Biophys Res Commun 1994;202:1468–1475.
44. Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans.
Genomics 1997;45:17–23.
45. Meheus LA, Fransen LM, Raymackers JG, et al. Identification by microsequencing of lipopolysaccharide-induced proteins secreted by mouse macrophages.
J Immunol 1993;151:1535–1547.
46. Chan P, Simon-Chazottes D, Mattei MG, Guenet JL, Salier JP. Comparative mapping of lipocalin genes in human and mouse: the four genes for complement C8 gamma chain, prostaglandin-D-synthase, oncogene-24p3, and progestagen-associated endometrial protein map to HSA9 and MMU2.
Genomics 1994;23:145–150.
47. Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase.
J Biol Chem 1993;268:10425–10432.
48. Xu SY, Carlson M, Engström A, Garcia R, Peterson CG, Venge P. Purification and characterization of a human neutrophil lipocalin (HNL) from the secondary granules of human neutrophils.
Scand J Clin Lab Invest 1994;54:365–376.
49. Cai L, Rubin J, Han W, Venge P, Xu S. The origin of multiple molecular forms in urine of HNL/NGAL.
Clin J Am Soc Nephrol 2010;5:2229–2235.
50. Salman Ali S, Bonn RM, Grenier FC, Rae TD, Rupprecht KR, Syed HN, Inventor; Abbott Laboratories, assignee. Neutrophil gelatinase-associated lipocalin (NGAL) protein isoforms enriched from urine and recombinant chinese hamster ovary (CHO) cells and related compositions, antibodies, and methods of enrichment, analysis and use. United States patent US 8,394,606 B2. 2013 Mar 12.
51. Jaberi SA, Cohen A, D’Souza C, et al. Lipocalin-2: structure, function, distribution and role in metabolic disorders.
Biomed Pharmacother 2021;142:112002.
52. Chakraborty S, Kaur S, Tong Z, Batra SK, Guh S. Neutrophil gelatinase associated lipocalin: structure, function and role in human pathogenesis [Internet]. In: Veas F, ed. Acute phase proteins: regulation and functions of acute phase proteins. InTech, 2011 [cited 2023 Dec 6]. Available from:
https://doi.org/10.5772/18755
53. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition.
Mol Cell 2002;10:1033–1043.
54. Kjeldsen L, Cowland JB, Borregaard N. Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse.
Biochim Biophys Acta 2000;1482:272–283.
55. Flower DR, North AC, Sansom CE. The lipocalin protein family: structural and sequence overview.
Biochim Biophys Acta 2000;1482:9–24.
56. Viau A, El Karoui K, Laouari D, et al. Lipocalin 2 is essential for chronic kidney disease progression in mice and humans.
J Clin Invest 2010;120:4065–4076.
57. Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury.
J Am Soc Nephrol 2003;14:2534–2543.
58. Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery.
Lancet 2005;365:1231–1238.
59. Lau WK, Blute ML, Weaver AL, Torres VE, Zincke H. Matched comparison of radical nephrectomy vs nephron-sparing surgery in patients with unilateral renal cell carcinoma and a normal contralateral kidney.
Mayo Clin Proc 2000;75:1236–1242.
60. Yndestad A, Landrø L, Ueland T, et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure.
Eur Heart J 2009;30:1229–1236.
61. Mallbris L, Larsson P, Bergqvist S, Vingård E, Granath F, Ståhle M. Psoriasis phenotype at disease onset: clinical characterization of 400 adult cases.
J Invest Dermatol 2005;124:499–504.
62. Van Dyke TE, Schweinebraten M, Cianciola LJ, Offenbacher S, Genco RJ. Neutrophil chemotaxis in families with localized juvenile periodontitis.
J Periodontal Res 1985;20:503–514.
63. Wang Y, Lam KS, Kraegen EW, et al. Lipocalin-2 is an inflammatory marker closely associated with obesity, insulin resistance, and hyperglycemia in humans.
Clin Chem 2007;53:34–41.
64. Wazen RM, Moffatt P, Ponce KJ, Kuroda S, Nishio C, Nanci A. Inactivation of the Odontogenic ameloblast-associated gene affects the integrity of the junctional epithelium and gingival healing.
Eur Cell Mater 2015;30:187–199.
65. Lee S, Park JY, Lee WH, et al. Lipocalin-2 is an autocrine mediator of reactive astrocytosis.
J Neurosci 2009;29:234–249.
66. Lim R, Ahmed N, Borregaard N, et al. Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition.
Int J Cancer 2007;120:2426–2434.
67. Cowland JB, Sørensen OE, Sehested M, Borregaard N. Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha.
J Immunol 2003;171:6630–6639.
69. Nam Y, Kim JH, Seo M, et al. Lipocalin-2 protein deficiency ameliorates experimental autoimmune encephalomyelitis: the pathogenic role of lipocalin-2 in the central nervous system and peripheral lymphoid tissues.
J Biol Chem 2014;289:16773–16789.
71. Schmidt-Ott KM, Mori K, Kalandadze A, et al. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia.
Curr Opin Nephrol Hypertens 2006;15:442–449.
72. Miyamoto T, Kashima H, Yamada Y, et al. Lipocalin 2 enhances migration and resistance against cisplatin in endometrial carcinoma cells.
PLoS One 2016;11:e0155220.
73. Tung MC, Hsieh SC, Yang SF, et al. Knockdown of lipocalin-2 suppresses the growth and invasion of prostate cancer cells.
Prostate 2013;73:1281–1290.
74. Mori K, Lee HT, Rapoport D, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury.
J Clin Invest 2005;115:610–621.
75. Li X, Luo Y, Starremans PG, McNamara CA, Pei Y, Zhou J. Polycystin-1 and polycystin-2 regulate the cell cycle through the helix-loop-helix inhibitor Id2.
Nat Cell Biol 2005;7:1202–1212.
76. Ismail G, Bobeica R, Ioanitescu S, Jurubita R. Association of serum and urinary neutrophil gelatinase-associated lipocalin (NGAL) levels with disease severity in patients with early-stage autosomal dominant polycystic kidney disease. Rev Romana Med Lab 2012;20:109–116.
77. Parikh CR, Liu C, Mor MK, et al. Kidney biomarkers of injury and repair as predictors of contrast-associated AKI: a substudy of the PRESERVE trial.
Am J Kidney Dis 2020;75:187–194.
78. Devarajan P. Neutrophil gelatinase-associated lipocalin: new paths for an old shuttle.
Cancer Ther 2007;5:463–470.
79. Wang E, Chiou YY, Jeng WY, et al. Overexpression of exogenous kidney-specific Ngal attenuates progressive cyst development and prolongs lifespan in a murine model of polycystic kidney disease.
Kidney Int 2017;91:412–422.
81. Lee HJ, Lee EK, Lee KJ, Hong SW, Yoon Y, Kim JS. Ectopic expression of neutrophil gelatinase-associated lipocalin suppresses the invasion and liver metastasis of colon cancer cells.
Int J Cancer 2006;118:2490–2497.
82. Chuang HY, Jeng WY, Wang E, et al. Secreted neutrophil gelatinase-associated lipocalin shows stronger ability to inhibit cyst enlargement of ADPKD cells compared with nonsecreted form.
Cells 2022;11:483.
83. Kistler AD, Altintas MM, Reiser J. Podocyte GTPases regulate kidney filter dynamics.
Kidney Int 2012;81:1053–1055.
84. Chebib FT, Torres VE. Autosomal dominant polycystic kidney disease: core curriculum 2016.
Am J Kidney Dis 2016;67:792–810.
86. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease.
Lancet 2007;369:1287–1301.