2. Johansen KL, Chertow GM, Foley RN, et al. US renal data system 2020 annual data report: epidemiology of kidney disease in the United States.
Am J Kidney Dis 2021;77(4 Suppl 1):A7–A8.
3. Saez-Rodriguez J, Rinschen MM, Floege J, Kramann R. Big science and big data in nephrology.
Kidney Int 2019;95:1326–1337.
4. Borg DN, Lohse KR, Sainani KL. Ten common statistical errors from all phases of research, and their fixes.
PM R 2020;12:610–614.
6. Lemley KV. Machine learning comes to nephrology.
J Am Soc Nephrol 2019;30:1780–1781.
7. McCullough K, Sharma P, Ali T, et al. Measuring the population burden of chronic kidney disease: a systematic literature review of the estimated prevalence of impaired kidney function.
Nephrol Dial Transplant 2012;27:1812–1821.
8. Streja E, Goldstein L, Soohoo M, Obi Y, Kalantar-Zadeh K, Rhee CM. Modeling longitudinal data and its impact on survival in observational nephrology studies: tools and considerations.
Nephrol Dial Transplant 2017;32(suppl_2):ii77–ii83.
9. Zeng XX, Liu J, Ma L, Fu P. Big data research in chronic kidney disease.
Chin Med J (Engl) 2018;131:2647–2650.
10. Curran-Everett D, Benos DJ; American Physiological Society. Guidelines for reporting statistics in journals published by the American Physiological Society.
Am J Physiol Endocrinol Metab 2004;287:E189–E191.
11. Waikar SS, Sabbisetti VS, Bonventre JV. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate.
Kidney Int 2010;78:486–494.
12. Blazek K, van Zwieten A, Saglimbene V, Teixeira-Pinto A. A practical guide to multiple imputation of missing data in nephrology.
Kidney Int 2021;99:68–74.
13. Kim N, Fischer AH, Dyring-Andersen B, Rosner B, Okoye GA. Research techniques made simple: choosing appropriate statistical methods for clinical research.
J Invest Dermatol 2017;137:e173–e178.
14. Vonesh E, Tighiouart H, Ying J, et al. Mixed-effects models for slope-based endpoints in clinical trials of chronic kidney disease.
Stat Med 2019;38:4218–4239.
16. Gupta AK, Udrea A. Beyond linear methods of data analysis: time series analysis and its applications in renal research.
Nephron Physiol 2013;124:14–27.
17. Rosopa PJ, Schaffer MM, Schroeder AN. Managing heteroscedasticity in general linear models.
Psychol Methods 2013;18:335–351.
18. Yang K, Tu J, Chen T. Homoscedasticity: an overlooked critical assumption for linear regression.
Gen Psychiatr 2019;32:e100148.
19. Altman DG, Bland JM. Statistics notes: the normal distribution.
BMJ 1995;310:298.
20. Curran-Everett D. Explorations in statistics: the assumption of normality.
Adv Physiol Educ 2017;41:449–453.
21. Hoekstra R, Kiers HA, Johnson A. Are assumptions of well-known statistical techniques checked, and why (not)?
Front Psychol 2012;3:137.
22. Ali MM, Sharma SC. Robustness to nonnormality of regression F-tests.
J Econom 1996;71:175–205.
23. Box GEP, Watson GS. Robustness to non-normality of regression tests.
Biometrika 1962;49:93–106.
24. Lumley T, Diehr P, Emerson S, Chen L. The importance of the normality assumption in large public health data sets.
Annu Rev Public Health 2002;23:151–169.
25. Schielzeth H, Dingemanse NJ, Nakagawa S, et al. Robustness of linear mixed-effects models to violations of distributional assumptions.
Methods Ecol Evol 2020;11:1141–1152.
27. Schmidt AF, Finan C. Linear regression and the normality assumption.
J Clin Epidemiol 2018;98:146–151.
28. Tang KW, Toh QC, Teo BW. Normalisation of urinary biomarkers to creatinine for clinical practice and research: when and why.
Singapore Med J 2015;56:7–10.
29. Blaikley J, Sutton P, Walter M, et al. Tubular proteinuria and enzymuria following open heart surgery.
Intensive Care Med 2003;29:1364–1367.
30. Kamijo A, Sugaya T, Hikawa A, et al. Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules.
Am J Pathol 2004;165:1243–1255.
31. Kamal A. Estimation of blood urea (BUN) and serum creatinine level in patients of renal disorder. Indian J Fundam Appl Life Sci 2014;4:199–202.
32. Yoo W, Mayberry R, Bae S, Singh K, Peter He Q, Lillard JW. A study of effects of multicollinearity in the multivariable analysis.
Int J Appl Sci Technol 2014;4:9–19.
34. Nahm FS. Nonparametric statistical tests for the continuous data: the basic concept and the practical use.
Korean J Anesthesiol 2016;69:8–14.
35. Graham JW. Missing data analysis: making it work in the real world.
Annu Rev Psychol 2009;60:549–576.
36. Montez-Rath ME, Winkelmayer WC, Desai M. Addressing missing data in clinical studies of kidney diseases.
Clin J Am Soc Nephrol 2014;9:1328–1335.
37. Baigent C, Herrington WG, Coresh J, et al. Challenges in conducting clinical trials in nephrology: conclusions from a Kidney Disease-Improving Global Outcomes (KDIGO) controversies conference.
Kidney Int 2017;92:297–305.
38. Riley RD, Collins GS. Stability of clinical prediction models developed using statistical or machine learning methods.
Biom J 2023;65:e2200302.
39. Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer; 2001.
40. Kang H, Kim EE, Shokouhi S, Tokita K, Shin HW. Texture analysis of F-18 Fluciclovine PET/CT to predict biochemically recurrent prostate cancer: initial results.
Tomography 2020;6:301–307.
41. Kuha J. AIC and BIC: Comparisons of assumptions and performance. Sociol Method Res 2004;33:188–229.
42. Cheng Y, Shang J, Liu D, Xiao J, Zhao Z. Development and validation of a predictive model for the progression of diabetic kidney disease to kidney failure.
Ren Fail 2020;42:550–559.
44. Kaur N, Bhattacharya S, Butte AJ. Big data in nephrology.
Nat Rev Nephrol 2021;17:676–687.
45. Cai J, Luo J, Wang S, Yang S. Feature selection in machine learning: a new perspective.
Neurocomputing 2018;300:70–79.
46. Ebiaredoh-Mienye SA, Swart TG, Esenogho E, Mienye ID. A machine learning method with filter-based feature selection for improved prediction of chronic kidney disease.
Bioengineering (Basel) 2022;9:350.
47. Rhee EP. How omics data can be used in nephrology.
Am J Kidney Dis 2018;72:129–135.
48. Eddy S, Mariani LH, Kretzler M. Integrated multi-omics approaches to improve classification of chronic kidney disease.
Nat Rev Nephrol 2020;16:657–668.
49. Simon N, Friedman J, Hastie T, Tibshirani R. A sparse-group lasso.
J Comput Graph Stat 2013;22:231–245.
50. Boulesteix AL, De Bin R, Jiang X, Fuchs M. IPF-LASSO: Integrative L1-penalized regression with penalty factors for prediction based on multi-omics data.
Comput Math Methods Med 2017;2017:7691937.
52. Zhang R, Datta S. asmbPLS: biomarker identification and patient survival prediction with multi-omics data.
Front Genet 2024;15:1444054.
53. Zhang R, Datta S. Adaptive sparse multi-block PLS discriminant analysis: an integrative method for identifying key biomarkers from multi-omics data.
Genes (Basel) 2023;14:961.
54. Strippoli GF, Craig JC, Schena FP. The number, quality, and coverage of randomized controlled trials in nephrology.
J Am Soc Nephrol 2004;15:411–419.
55. Inrig JK, Califf RM, Tasneem A, et al. The landscape of clinical trials in nephrology: a systematic review of Clinicaltrials.gov.
Am J Kidney Dis 2014;63:771–780.
56. Vabalas A, Gowen E, Poliakoff E, Casson AJ. Machine learning algorithm validation with a limited sample size.
PLoS One 2019;14:e0224365.
57. Raudys SJ, Jain AK. Small sample size effects in statistical pattern recognition: Recommendations for practitioners.
IEEE Trans Pattern Anal Mach Intell 1991;13:252–264.
58. Kanal L, Chandrasekaran B. On dimensionality and sample size in statistical pattern classification.
Pattern Recognit 1971;3:225–234.
59. Iqbal SA, Wallach JD, Khoury MJ, Schully SD, Ioannidis JP. Reproducible research practices and transparency across the biomedical literature.
PLoS Biol 2016;14:e1002333.
60. Fladie IA, Adewumi TM, Vo NH, Tritz DJ, Vassar MB. An evaluation of nephrology literature for transparency and reproducibility indicators: cross-sectional review.
Kidney Int Rep 2019;5:173–181.
61. Horton NJ, Kleinman K. Using R and RStudio for data management, statistical analysis, and graphics. 2nd ed. CRC Press; 2015.
62. Montesinos López OA, Montesinos López A, Crossa J. Multivariate statistical machine learning methods for genomic prediction. Springer; 2022.