1. Maekawa H, Inoue T, Ouchi H, et al. 2019;Mitochondrial damage causes inflammation via cGAS-STING signaling in acute kidney injury.
Cell Rep 29:1261–1273.e6.
2. Chung KW, Dhillon P, Huang S, et al. 2019;Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis.
Cell Metab 30:784–799.e5.
3. Bhargava P, Schnellmann RG. 2017;Mitochondrial energetics in the kidney.
Nat Rev Nephrol 13:629–646.
4. Honda T, Hirakawa Y, Nangaku M. 2019;The role of oxidative stress and hypoxia in renal disease.
Kidney Res Clin Pract 38:414–426.
5. Tran M, Tam D, Bardia A, et al. 2011;PGC-1α promotes recovery after acute kidney injury during systemic inflammation in mice.
J Clin Invest 121:4003–4014.
6. Mishra P, Chan DC. 2014;Mitochondrial dynamics and inheritance during cell division, development and disease.
Nat Rev Mol Cell Biol 15:634–646.
7. Zhan M, Brooks C, Liu F, Sun L, Dong Z. 2013;Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology.
Kidney Int 83:568–581.
8. Nunnari J, Suomalainen A. 2012;Mitochondria: in sickness and in health.
Cell 148:1145–1159.
9. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. 2004;OPA1 requires mitofusin 1 to promote mitochondrial fusion.
Proc Natl Acad Sci U S A 101:15927–15932.
10. Ishihara N, Eura Y, Mihara K. 2004;Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity.
J Cell Sci 117(Pt 26):6535–6546.
11. Chen Y, Dorn GW 2nd. 2013;PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria.
Science 340:471–475.
12. Bhatia D, Chung KP, Nakahira K, et al. 2019;Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis.
JCI Insight 4:e132826.
13. de Brito OM, Scorrano L. 2008;Mitofusin 2 tethers endoplasmic reticulum to mitochondria.
Nature 456:605–610.
14. Tang C, Han H, Yan M, et al. 2018;PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury.
Autophagy 14:880–897.
15. Zhou Y, Greka A. 2016;Calcium-permeable ion channels in the kidney.
Am J Physiol Renal Physiol 310:F1157–F1167.
16. Li S, Lin Q, Shao X, et al. 2020;Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction.
Free Radic Biol Med 152:632–649.
17. Burman JL, Pickles S, Wang C, et al. 2017;Mitochondrial fission facilitates the selective mitophagy of protein aggregates.
J Cell Biol 216:3231–3247.
18. Bhatia D, Choi ME. 2019;The emerging role of mitophagy in kidney diseases.
J Life Sci (Westlake Village) 1:13–22.
19. Ryter SW, Bhatia D, Choi ME. 2019;Autophagy: a lysosome-dependent process with implications in cellular redox homeostasis and human disease.
Antioxid Redox Signal 30:138–159.
20. Galvan DL, Green NH, Danesh FR. 2017;The hallmarks of mitochondrial dysfunction in chronic kidney disease.
Kidney Int 92:1051–1057.
21. Ishimoto Y, Inagi R. 2016;Mitochondria: a therapeutic target in acute kidney injury.
Nephrol Dial Transplant 31:1062–1069.
22. Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. 2019;The application of electron microscopy and cellular biochemistry to the autopsy. Observations on cellular changes in human shock.
Kidney Int 96:1083–1099.
23. Sun J, Zhang J, Tian J, et al. 2019;Mitochondria in sepsis-induced AKI.
J Am Soc Nephrol 30:1151–1161.
24. Trump BF, Valigorsky JM, Jones RT, Mergner WJ, Garcia JH, Cowley RA. 1975;The application of electron microscopy and cellular biochemistry to the autopsy.
Hum Pathol 6:499–516.
25. Li S, Hu Q, Huang J, Wu X, Ren J. 2019;Mitochondria-derived damage-associated molecular patterns in sepsis: from bench to bedside.
Oxid Med Cell Longev 2019:6914849.
26. Mariano F, Cantaluppi V, Stella M, et al. 2008;Circulating plasma factors induce tubular and glomerular alterations in septic burns patients.
Crit Care 12:R42.
27. Tsuji N, Tsuji T, Ohashi N, Kato A, Fujigaki Y, Yasuda H. 2016;Role of mitochondrial DNA in septic AKI via Toll-like receptor 9.
J Am Soc Nephrol 27:2009–2020.
28. Sureshbabu A, Patino E, Ma KC, et al. 2018;RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction.
JCI Insight 3:e98411.
29. Lerolle N, Nochy D, Guérot E, et al. 2010;Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration.
Intensive Care Med 36:471–478.
30. Zhang S, Li R, Dong W, et al. 2019;RIPK3 mediates renal tubular epithelial cell apoptosis in endotoxin-induced acute kidney injury.
Mol Med Rep 20:1613–1620.
31. Marshall KD, Baines CP. 2014;Necroptosis: is there a role for mitochondria?
Front Physiol 5:323.
32. Tait SW, Oberst A, Quarato G, et al. 2013;Widespread mitochondrial depletion via mitophagy does not compromise necroptosis.
Cell Rep 5:878–885.
33. Lan R, Geng H, Singha PK, et al. 2016;Mitochondrial pathology and glycolytic shift during proximal tubule atrophy after ischemic AKI.
J Am Soc Nephrol 27:3356–3367.
34. Liu S, Soong Y, Seshan SV, Szeto HH. 2014;Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation, and fibrosis.
Am J Physiol Renal Physiol 306:F970–F980.
35. Brooks C, Wei Q, Cho SG, Dsong Z. 2009;Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models.
J Clin Invest 119:1275–1285.
36. Perry HM, Huang L, Wilson RJ, et al. 2018;Dynamin-related protein 1 deficiency promotes recovery from AKI.
J Am Soc Nephrol 29:194–206.
37. Cho SG, Du Q, Huang S, Dong Z. 2010;Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis.
Am J Physiol Renal Physiol 299:F199–F206.
38. Li H, Feng J, Zhang Y, et al. 2019;Mst1 deletion attenuates renal ischaemia-reperfusion injury: the role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway.
Redox Biol 20:261–274.
39. Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, et al. 2003;Activation of mitochondrial apoptotic pathways in human renal allografts after ischemiareperfusion injury.
Transplantation 76:50–54.
40. Han SJ, Lee HT. 2019;Mechanisms and therapeutic targets of ischemic acute kidney injury.
Kidney Res Clin Pract 38:427–440.
41. Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ. 2006;Role of Bax and Bak in mitochondrial morphogenesis.
Nature 443:658–662.
42. Brooks C, Wei Q, Feng L, et al. 2007;Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins.
Proc Natl Acad Sci U S A 104:11649–11654.
43. Wasiak S, Zunino R, McBride HM. 2007;Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death.
J Cell Biol 177:439–450.
44. Huen SC, Cantley LG. 2015;Macrophage-mediated injury and repair after ischemic kidney injury.
Pediatr Nephrol 30:199–209.
45. Livingston MJ, Wang J, Zhou J, et al. 2019;Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys.
Autophagy 15:2142–2162.
46. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. 2010;Mechanisms of cisplatin nephrotoxicity.
Toxins (Basel) 2:2490–2518.
47. Mapuskar KA, Wen H, Holanda DG, et al. 2019;Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease.
Redox Biol 20:98–106.
48. Tsuruya K, Ninomiya T, Tokumoto M, et al. 2003;Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death.
Kidney Int 63:72–82.
49. Wei Q, Dong G, Franklin J, Dong Z. 2007;The pathological role of Bax in cisplatin nephrotoxicity.
Kidney Int 72:53–62.
50. Liu L, Yang C, Herzog C, Seth R, Kaushal GP. 2010;Proteasome inhibitors prevent cisplatin-induced mitochondrial release of apoptosis-inducing factor and markedly ameliorate cisplatin nephrotoxicity.
Biochem Pharmacol 79:137–146.
51. Zsengellér ZK, Ellezian L, Brown D, et al. 2012;Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity.
J Histochem Cytochem 60:521–529.
52. Kruidering M, Van de Water B, de Heer E, Mulder GJ, Nagelkerke JF. 1997;Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain.
J Pharmacol Exp Ther 280:638–649.
53. Nowak G. 2002;Protein kinase C-alpha and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells.
J Biol Chem 277:43377–43388.
54. Santos NA, Catão CS, Martins NM, Curti C, Bianchi ML, Santos AC. 2007;Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria.
Arch Toxicol 81:495–504.
55. Mukhopadhyay P, Horváth B, Zsengellér Z, et al. 2012;Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy.
Free Radic Biol Med 52:497–506.
56. Xiao L, Xu X, Zhang F, et al. 2017;The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1.
Redox Biol 11:297–311.
57. Szeto HH, Liu S, Soong Y, et al. 2017;Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1
β and IL-18 and arrests CKD.
J Am Soc Nephrol 28:1437–1449.
58. Kang HM, Ahn SH, Choi P, et al. 2015;Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development.
Nat Med 21:37–46.
59. Choi ME. 2020;Autophagy in kidney disease.
Annu Rev Physiol 82:297–322.
60. Polverino F, Laucho-Contreras ME, Petersen H, et al. 2017;A pilot study linking endothelial injury in lungs and kidneys in chronic obstructive pulmonary disease.
Am J Respir Crit Care Med 195:1464–1476.
61. Pabón MA, Patino E, Bhatia D, et al. 2018;Beclin-1 regulates cigarette smoke-induced kidney injury in a murine model of chronic obstructive pulmonary disease.
JCI Insight 3:e99592.
62. Zhang WZ, Rice MC, Hoffman KL, et al. SPIROMICS Investigators. 2020;Association of urine mitochondrial DNA with clinical measures of COPD in the SPIROMICS cohort.
JCI Insight 5:e133984.
63. Forbes JM, Thorburn DR. 2018;Mitochondrial dysfunction in diabetic kidney disease.
Nat Rev Nephrol 14:291–312.
64. Qi W, Keenan HA, Li Q, et al. 2017;Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction.
Nat Med 23:753–762.
65. Kaneda K, Sakata N, Takebayashi S. 1992;Mitochondrial enlargement and basement membrane thickening of renal proximal tubules, possible initiators of microalbuminuria in non-insulin-dependent diabetics (NIDDM).
Acta Pathol Jpn 42:793–799.
66. Czajka A, Ajaz S, Gnudi L, et al. 2015;Altered mitochondrial function, mitochondrial DNA and reduced metabolic flexibility in patients with diabetic nephropathy.
EBioMedicine 2:499–512.
67. Wei PZ, Kwan BC, Chow KM, et al. 2018;Urinary mitochondrial DNA level is an indicator of intra-renal mitochondrial depletion and renal scarring in diabetic nephropathy.
Nephrol Dial Transplant 33:784–788.
68. Coughlan MT, Thorburn DR, Penfold SA, et al. 2009;RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes.
J Am Soc Nephrol 20:742–752.
69. Ayanga BA, Badal SS, Wang Y, et al. 2016;Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy.
J Am Soc Nephrol 27:2733–2747.
70. Rodrigues JC, Haas M, Reich HN. 2017;IgA nephropathy.
Clin J Am Soc Nephrol 12:677–686.
71. Nishida M, Morimoto M, Ohno K, Hamaoka K. 2015;IgA nephropathy in a girl with mitochondrial disease.
Pediatr Int 57:e50–e52.
72. Yu BC, Cho NJ, Park S, et al. 2019;IgA nephropathy is associated with elevated urinary mitochondrial DNA copy numbers.
Sci Rep 9:16068.
73. Douglas AP, Vance DR, Kenny EM, Morris DW, Maxwell AP, McKnight AJ. 2014;Next-generation sequencing of the mitochondrial genome and association with IgA nephropathy in a renal transplant population.
Sci Rep 4:7379.
74. Bhreathnach U, Griffin B, Brennan E, Ewart L, Higgins D, Murphy M. 2017;Profibrotic IHG-1 complexes with renal disease associated HSPA5 and TRAP1 in mitochondria.
Biochim Biophys Acta Mol Basis Dis 1863:896–906.
75. Salant DJ. 2019;Unmet challenges in membranous nephropathy.
Curr Opin Nephrol Hypertens 28:70–76.
76. Wei QJ, Xu H, Guan N, et al. 2018;Overproduction of mitochondrial fission proteins in membranous nephropathy in children.
Kidney Blood Press Res 43:1927–1934.
77. Buelli S, Perico L, Galbusera M, et al. 2015;Mitochondrial-dependent autoimmunity in membranous nephropathy of IgG4-related disease.
EBioMedicine 2:456–466.
78. Wang L, Nomura M. 2015;Loss of Drp1 in the liver leads to an alteration in expression of the genes involved in the immune system.
Genom Data 6:27–30.
79. Padovano V, Podrini C, Boletta A, Caplan MJ. 2018;Metabolism and mitochondria in polycystic kidney disease research and therapy.
Nat Rev Nephrol 14:678–687.
80. Li X, Magenheimer BS, Xia S, et al. 2008;A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease.
Nat Med 14:863–868.
81. Zheng D, Wolfe M, Wallace DP, Yamaguchi T, Grantham JJ. 2003;Urinary excretion of monocyte chemoattractant protein-1 in autosomal dominant polycystic kidney disease.
J Am Soc Nephrol 14:2588–2595.
82. Mrug M, Zhou J, Woo Y, et al. 2008;Overexpression of innate immune response genes in a model of recessive polycystic kidney disease.
Kidney Int 73:63–76.
83. Kuo IY, Brill AL, Lemos FO, et al. 2019;Polycystin 2 regulates mitochondrial Ca
2+ signaling, bioenergetics, and dynamics through mitofusin 2.
Sci Signal 12:eaat7397.
84. Ishimoto Y, Inagi R, Yoshihara D, et al. 2017;Mitochondrial abnormality facilitates cyst formation in autosomal dominant polycystic kidney disease.
Mol Cell Biol 37:e00337–17.
85. Hajarnis S, Lakhia R, Yheskel M, et al. 2017;microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism.
Nat Commun 8:14395.
86. Podrini C, Cassina L, Boletta A. 2020;Metabolic reprogramming and the role of mitochondria in polycystic kidney disease.
Cell Signal 67:109495.
87. Patil NK, Parajuli N, MacMillan-Crow LA, Mayeux PR. 2014;Inactivation of renal mitochondrial respiratory complexes and manganese superoxide dismutase during sepsis: mitochondria-targeted antioxidant mitigates injury.
Am J Physiol Renal Physiol 306:F734–F743.
88. Dare AJ, Bolton EA, Pettigrew GJ, Bradley JA, Saeb-Parsy K, Murphy MP. 2015;Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ.
Redox Biol 5:163–168.
89. Plotnikov EY, Chupyrkina AA, Jankauskas SS, et al. 2011;Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion.
Biochim Biophys Acta 1812:77–86.
90. Suzuki T, Yamaguchi H, Kikusato M, et al. 2016;Mitochonic acid 5 binds mitochondria and ameliorates renal tubular and cardiac myocyte damage.
J Am Soc Nephrol 27:1925–1932.
91. Eirin A, Li Z, Zhang X, et al. 2012;A mitochondrial permeability transition pore inhibitor improves renal outcomes after revascularization in experimental atherosclerotic renal artery stenosis.
Hypertension 60:1242–1249.
92. Li G, Wu J, Li R, et al. 2016;Protective effects of antioxidant peptide SS-31 against multiple organ dysfunctions during endotoxemia.
Inflammation 39:54–64.
93. Jesinkey SR, Funk JA, Stallons LJ, et al. 2014;Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury.
J Am Soc Nephrol 25:1157–1162.
94. Chacko BK, Reily C, Srivastava A, et al. 2010;Prevention of diabetic nephropathy in Ins2(+/)-(AkitaJ) mice by the mitochondria-targeted therapy MitoQ.
Biochem J 432:9–19.
95. Mizuguchi Y, Chen J, Seshan SV, Poppas DP, Szeto HH, Felsen D. 2008;A novel cell-permeable antioxidant peptide decreases renal tubular apoptosis and damage in unilateral ureteral obstruction.
Am J Physiol Renal Physiol 295:F1545–F1553.
96. Szeto HH, Liu S, Soong Y, Alam N, Prusky GT, Seshan SV. 2016;Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury.
Kidney Int 90:997–1011.
97. Davis TM, Ting R, Best JD, et al. Fenofibrate Intervention and Event Lowering in Diabetes Study investigators. 2011;Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study.
Diabetologia 54:280–290.
98. Declèves AE, Zolkipli Z, Satriano J, et al. 2014;Regulation of lipid accumulation by AMP-activated kinase in high fat diet-induced kidney injury.
Kidney Int 85:611–623.
99. Wills LP, Trager RE, Beeson GC, et al. 2012;The β2-adrenoceptor agonist formoterol stimulates mitochondrial biogenesis.
J Pharmacol Exp Ther 342:106–118.
100. Yang HC, Deleuze S, Zuo Y, Potthoff SA, Ma LJ, Fogo AB. 2009;The PPARgamma agonist pioglitazone ameliorates aging-related progressive renal injury.
J Am Soc Nephrol 20:2380–2388.