1. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities.
Clin J Am Soc Nephrol 2017;12:2032–2045.
2. Jung CH, Son JW, Kang S, et al. Diabetes fact sheets in Korea, 2020: an appraisal of current status.
Diabetes Metab J 2021;45:1–10.
3. Baik I. Projection of diabetes prevalence in Korean adults for the year 2030 using risk factors identified from national data.
Diabetes Metab J 2019;43:90–96.
4. Hong YA, Ban TH, Kang CY, et al. Trends in epidemiologic characteristics of end-stage renal disease from 2019 Korean Renal Data System (KORDS).
Kidney Res Clin Pract 2021;40:52–61.
5. Jin DC, Han JS. Renal replacement therapy in Korea, 2012.
Kidney Res Clin Pract 2014;33:9–18.
6. Liyanage T, Ninomiya T, Jha V, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review.
Lancet 2015;385:1975–1982.
7. Li S, Wang J, Zhang B, Li X, Liu Y. Diabetes mellitus and cause-specific mortality: a population-based study.
Diabetes Metab J 2019;43:319–341.
8. Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes.
J Am Soc Nephrol 2013;24:302–308.
9. Yamazaki T, Mimura I, Tanaka T, Nangaku M. Treatment of diabetic kidney disease: current and future.
Diabetes Metab J 2021;45:11–26.
10. Kristensen SL, Rørth R, Jhund PS, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials.
Lancet Diabetes Endocrinol 2019;7:776–785.
11. Neuen BL, Young T, Heerspink HJ, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis.
Lancet Diabetes Endocrinol 2019;7:845–854.
12. Oh TJ, Moon JY, Hur KY, et al. Sodium-glucose cotransporter-2 inhibitor for renal function preservation in patients with type 2 diabetes mellitus: a Korean Diabetes Association and Korean Society of Nephrology consensus statement.
Kidney Res Clin Pract 2020;39:269–283.
13. Hur KY, Moon MK, Park JS, et al. 2021 Clinical practice guidelines for diabetes mellitus of the Korean Diabetes Association.
Diabetes Metab J 2021;45:461–481.
14. American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2021.
Diabetes Care 2021;44(Suppl 1):S111–S124.
15. Elrick H, Stimmler L, Hlad CJ Jr, Arai Y. Plasma insulin response to oral and intravenous glucose administration.
J Clin Endocrinol Metab 1964;24:1076–1082.
16. Eissele R, Göke R, Willemer S, et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man.
Eur J Clin Invest 1992;22:283–291.
17. Orskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day.
Scand J Gastroenterol 1996;31:665–670.
18. Kuhre RE, Wewer Albrechtsen NJ, Hartmann B, Deacon CF, Holst JJ. Measurement of the incretin hormones: glucagon-like peptide-1 and glucose-dependent insulinotropic peptide.
J Diabetes Complications 2015;29:445–450.
19. Rask E, Olsson T, Söderberg S, et al. Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men.
Diabetes Care 2001;24:1640–1645.
20. Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns.
J Endocrinol 1993;138:159–166.
21. Roberge JN, Brubaker PL. Regulation of intestinal proglucagon-derived peptide secretion by glucose-dependent insulinotropic peptide in a novel enteroendocrine loop.
Endocrinology 1993;133:233–240.
22. Lim GE, Brubaker PL. Glucagon-like peptide 1 secretion by the L-cell: the view from within. Diabetes 2006;55(Suppl_2):S70–S77.
23. Plaisancie P, Bernard C, Chayvialle JA, Cuber JC. Regulation of glucagon-like peptide-1-(7-36) amide secretion by intestinal neurotransmitters and hormones in the isolated vascularly perfused rat colon.
Endocrinology 1994;135:2398–2403.
24. Meier JJ, Nauck MA, Kranz D, et al. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects.
Diabetes 2004;53:654–662.
25. Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo.
J Clin Endocrinol Metab 1995;80:952–957.
26. Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV.
Endocrinology 1995;136:3585–3596.
27. Wei Y, Mojsov S. Tissue-specific expression of the human receptor for glucagon-like peptide-I: brain, heart and pancreatic forms have the same deduced amino acid sequences.
FEBS Lett 1995;358:219–224.
28. Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas.
Pharmacol Ther 2007;113:546–593.
29. Wang Y, Egan JM, Raygada M, Nadiv O, Roth J, Montrose-Rafizadeh C. Glucagon-like peptide-1 affects gene transcription and messenger ribonucleic acid stability of components of the insulin secretory system in RIN 1046-38 cells.
Endocrinology 1995;136:4910–4917.
30. Buteau J. GLP-1 receptor signaling: effects on pancreatic beta-cell proliferation and survival.
Diabetes Metab 2008;34 Suppl 2:S73–S77.
31. Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis.
J Biol Chem 2003;278:471–478.
32. Hare KJ, Knop FK, Asmar M, et al. Preserved inhibitory potency of GLP-1 on glucagon secretion in type 2 diabetes mellitus.
J Clin Endocrinol Metab 2009;94:4679–4687.
33. Little TJ, Pilichiewicz AN, Russo A, et al. Effects of intravenous glucagon-like peptide-1 on gastric emptying and intragastric distribution in healthy subjects: relationships with postprandial glycemic and insulinemic responses.
J Clin Endocrinol Metab 2006;91:1916–1923.
34. Toft-Nielsen MB, Madsbad S, Holst JJ. Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients.
Diabetes Care 1999;22:1137–1143.
35. Asmar A, Cramon PK, Simonsen L, et al. Extracellular fluid volume expansion uncovers a natriuretic action of GLP-1: a functional GLP-1-renal axis in man.
J Clin Endocrinol Metab 2019;104:2509–2519.
36. Crajoinas RO, Oricchio FT, Pessoa TD, et al. Mechanisms mediating the diuretic and natriuretic actions of the incretin hormone glucagon-like peptide-1.
Am J Physiol Renal Physiol 2011;301:F355–F363.
37. Trujillo JM, Nuffer W. GLP-1 receptor agonists for type 2 diabetes mellitus: recent developments and emerging agents.
Pharmacotherapy 2014;34:1174–1186.
38. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes.
Lancet 2006;368:1696–1705.
39. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus.
Nat Rev Endocrinol 2012;8:728–742.
40. Neumiller JJ. Incretin pharmacology: a review of the incretin effect and current incretin-based therapies.
Cardiovasc Hematol Agents Med Chem 2012;10:276–288.
41. Jespersen MJ, Knop FK, Christensen M. GLP-1 agonists for type 2 diabetes: pharmacokinetic and toxicological considerations.
Expert Opin Drug Metab Toxicol 2013;9:17–29.
42. Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome.
N Engl J Med 2015;373:2247–2257.
43. Muskiet MH, Tonneijck L, Huang Y, et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial.
Lancet Diabetes Endocrinol 2018;6:859–869.
44. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes.
N Engl J Med 2016;375:311–322.
45. Mann JF, Ørsted DD, Brown-Frandsen K, et al. Liraglutide and renal outcomes in type 2 diabetes.
N Engl J Med 2017;377:839–848.
46. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes.
N Engl J Med 2016;375:1834–1844.
47. Mann JF, Hansen T, Idorn T, et al. Effects of once-weekly subcutaneous semaglutide on kidney function and safety in patients with type 2 diabetes: a post-hoc analysis of the SUSTAIN 1-7 randomised controlled trials.
Lancet Diabetes Endocrinol 2020;8:880–893.
48. Holman RR, Bethel MA, Mentz RJ, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes.
N Engl J Med 2017;377:1228–1239.
49. Bethel MA, Mentz RJ, Merrill P, et al. Microvascular and cardiovascular outcomes according to renal function in patients treated with once-weekly exenatide: insights from the EXSCEL Trial.
Diabetes Care 2020;43:446–452.
50. Muskiet MH, Bunck MC, Heine RJ, et al. Exenatide twice-daily does not affect renal function or albuminuria compared to titrated insulin glargine in patients with type 2 diabetes mellitus: a post-hoc analysis of a 52-week randomized trial.
Diabetes Res Clin Pract 2019;153:14–22.
51. Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial.
Lancet 2018;392:1519–1529.
52. Tuttle KR, Lakshmanan MC, Rayner B, et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial.
Lancet Diabetes Endocrinol 2018;6:605–617.
53. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial.
Lancet 2019;394:131–138.
54. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomized placebo-controlled trial.
Lancet 2019;394:121–130.
55. Husain M, Birkenfeld AL, Donsmark M, et al. Oral Semaglutide and cardiovascular outcomes in patients with type 2 diabetes.
N Engl J Med 2019;381:841–851.
56. Gerstein HC, Sattar N, Rosenstock J, et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes.
N Engl J Med 2021;385:896–907.
57. Coca SG, Ismail-Beigi F, Haq N, Krumholz HM, Parikh CR. Role of intensive glucose control in development of renal end points in type 2 diabetes mellitus: systematic review and meta-analysis intensive glucose control in type 2 diabetes.
Arch Intern Med 2012;172:761–769.
58. Tuttle KR, Bruton JL, Perusek MC, Lancaster JL, Kopp DT, DeFronzo RA. Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus.
N Engl J Med 1991;324:1626–1632.
59. Blonde L, Jendle J, Gross J, et al. Once-weekly dulaglutide versus bedtime insulin glargine, both in combination with prandial insulin lispro, in patients with type 2 diabetes (AWARD-4): a randomised, open-label, phase 3, non-inferiority study.
Lancet 2015;385:2057–2066.
60. Mosenzon O, Blicher TM, Rosenlund S, et al. Efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment (PIONEER 5): a placebo-controlled, randomised, phase 3a trial.
Lancet Diabetes Endocrinol 2019;7:515–527.
61. Lingvay I, Catarig AM, Frias JP, et al. Efficacy and safety of once-weekly semaglutide versus daily canagliflozin as add-on to metformin in patients with type 2 diabetes (SUSTAIN 8): a double-blind, phase 3b, randomised controlled trial.
Lancet Diabetes Endocrinol 2019;7:834–844.
62. Nauck M, Rizzo M, Johnson A, Bosch-Traberg H, Madsen J, Cariou B. Once-daily liraglutide versus lixisenatide as add-on to metformin in type 2 diabetes: a 26-week randomized controlled clinical trial.
Diabetes Care 2016;39:1501–1509.
63. Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease.
Kidney Int 2020;98(4S):S1–S115.
64. Vitale M, Haxhi J, Cirrito T, Pugliese G. Renal protection with glucagon-like peptide-1 receptor agonists.
Curr Opin Pharmacol 2020;54:91–101.
65. Dalsgaard NB, Vilsbøll T, Knop FK. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk factors: a narrative review of head-to-head comparisons.
Diabetes Obes Metab 2018;20:508–519.
66. Mosterd CM, Bjornstad P, van Raalte DH. Nephroprotective effects of GLP-1 receptor agonists: where do we stand?
J Nephrol 2020;33:965–975.
67. Kamanna VS, Roh DD, Kirschenbaum MA. Hyperlipidemia and kidney disease: concepts derived from histopathology and cell biology of the glomerulus.
Histol Histopathol 1998;13:169–179.
68. Sun F, Wu S, Wang J, et al. Effect of glucagon-like peptide-1 receptor agonists on lipid profiles among type 2 diabetes: a systematic review and network meta-analysis.
Clin Ther 2015;37:225–241.
69. Wøjdemann M, Wettergren A, Sternby B, et al. Inhibition of human gastric lipase secretion by glucagon-like peptide-1.
Dig Dis Sci 1998;43:799–805.
70. Xiao C, Bandsma RH, Dash S, Szeto L, Lewis GF. Exenatide, a glucagon-like peptide-1 receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans.
Arterioscler Thromb Vasc Biol 2012;32:1513–1519.
71. Ben-Shlomo S, Zvibel I, Shnell M, et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase.
J Hepatol 2011;54:1214–1223.
72. Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice.
Hepatology 2006;43:173–181.
73. Kooijman S, Wang Y, Parlevliet ET, et al. Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice.
Diabetologia 2015;58:2637–2646.
74. Beiroa D, Imbernon M, Gallego R, et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK.
Diabetes 2014;63:3346–3358.
75. Pyke C, Heller RS, Kirk RK, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody.
Endocrinology 2014;155:1280–1290.
76. Schlatter P, Beglinger C, Drewe J, Gutmann H. Glucagon-like peptide 1 receptor expression in primary porcine proximal tubular cells.
Regul Pept 2007;141:120–128.
77. Fujita H, Sakamoto T, Komatsu K, et al. Reduction of circulating superoxide dismutase activity in type 2 diabetic patients with microalbuminuria and its modulation by telmisartan therapy.
Hypertens Res 2011;34:1302–1308.
78. Yin W, Jiang Y, Xu S, et al. Protein kinase C and protein kinase A are involved in the protection of recombinant human glucagon-like peptide-1 on glomeruli and tubules in diabetic rats.
J Diabetes Investig 2019;10:613–625.
79. Hendarto H, Inoguchi T, Maeda Y, et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases.
Metabolism 2012;61:1422–1434.
80. Wang C, Li C, Peng H, et al. Activation of the Nrf2-ARE pathway attenuates hyperglycemia-mediated injuries in mouse podocytes.
Cell Physiol Biochem 2014;34:891–902.
81. Zhou T, Zhang M, Zhao L, Li A, Qin X. Activation of Nrf2 contributes to the protective effect of Exendin-4 against angiotensin II-induced vascular smooth muscle cell senescence.
Am J Physiol Cell Physiol 2016;311:C572–C582.
82. Ye Y, Zhong X, Li N, Pan T. Protective effects of liraglutide on glomerular podocytes in obese mice by inhibiting the inflammatory factor TNF-α-mediated NF-κB and MAPK pathway.
Obes Res Clin Pract 2019;13:385–390.
83. Kodera R, Shikata K, Kataoka HU, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes.
Diabetologia 2011;54:965–978.
84. Chaudhuri A, Ghanim H, Vora M, et al. Exenatide exerts a potent antiinflammatory effect.
J Clin Endocrinol Metab 2012;97:198–207.
85. Bunck MC, Diamant M, Eliasson B, et al. Exenatide affects circulating cardiovascular risk biomarkers independently of changes in body composition.
Diabetes Care 2010;33:1734–1737.
86. Zhang H, Zhang X, Hu C, Lu W. Exenatide reduces urinary transforming growth factor-β
1 and type IV collagen excretion in patients with type 2 diabetes and microalbuminuria.
Kidney Blood Press Res 2012;35:483–488.
87. Hogan AE, Gaoatswe G, Lynch L, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus.
Diabetologia 2014;57:781–784.
88. Rizzo M, Abate N, Chandalia M, et al. Liraglutide reduces oxidative stress and restores heme oxygenase-1 and ghrelin levels in patients with type 2 diabetes: a prospective pilot study.
J Clin Endocrinol Metab 2015;100:603–606.
89. Yip KP, Tse CM, McDonough AA, Marsh DJ. Redistribution of Na+/H+ exchanger isoform NHE3 in proximal tubules induced by acute and chronic hypertension.
Am J Physiol 1998;275:F565–F575.
90. Ronn J, Jensen EP, Wewer Albrechtsen NJ, Holst JJ, Sorensen CM. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors.
Physiol Rep 2017;5:e13503.
91. Skov J, Dejgaard A, Frøkiær J, et al. Glucagon-like peptide-1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men.
J Clin Endocrinol Metab 2013;98:E664–E671.
92. Skov J, Pedersen M, Holst JJ, et al. Short-term effects of liraglutide on kidney function and vasoactive hormones in type 2 diabetes: a randomized clinical trial.
Diabetes Obes Metab 2016;18:581–589.
93. von Scholten BJ, Hansen TW, Goetze JP, Persson F, Rossing P. Glucagon-like peptide 1 receptor agonist (GLP-1 RA): long-term effect on kidney function in patients with type 2 diabetes.
J Diabetes Complications 2015;29:670–674.
94. Pocai A, Carrington PE, Adams JR, et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice.
Diabetes 2009;58:2258–2266.
95. Capozzi ME, Svendsen B, Encisco SE, et al. β Cell tone is defined by proglucagon peptides through cAMP signaling.
JCI Insight 2019;4:e126742.
96. Frias JP, Nauck MA, Van J, et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial.
Lancet 2018;392:2180–2193.
97. Madsen KB, Askov-Hansen C, Naimi RM, et al. Acute effects of continuous infusions of glucagon-like peptide (GLP)-1, GLP-2 and the combination (GLP-1+GLP-2) on intestinal absorption in short bowel syndrome (SBS) patients: a placebo-controlled study.
Regul Pept 2013;184:30–39.
98. Müller TD, Sullivan LM, Habegger K, et al. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21.
J Pept Sci 2012;18:383–393.
99. Suarez-Pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A. Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice.
Diabetes 2008;57:3281–3288.
100. Trevaskis JL, Mack CM, Sun C, et al. Improved glucose control and reduced body weight in rodents with dual mechanism of action peptide hybrids.
PLoS One 2013;8:e78154.
101. Neary NM, Small CJ, Druce MR, et al. Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively.
Endocrinology 2005;146:5120–5127.
102. Gutzwiller JP, Degen L, Matzinger D, Prestin S, Beglinger C. Interaction between GLP-1 and CCK-33 in inhibiting food intake and appetite in men.
Am J Physiol Regul Integr Comp Physiol 2004;287:R562–R567.
103. Balena R, Hensley IE, Miller S, Barnett AH. Combination therapy with GLP-1 receptor agonists and basal insulin: a systematic review of the literature.
Diabetes Obes Metab 2013;15:485–502.
104. Bech EM, Voldum-Clausen K, Pedersen SL, et al. Adrenomedullin and glucagon-like peptide-1 have additive effects on food intake in mice.
Biomed Pharmacother 2019;109:167–173.
105. Pan Q, Lin S, Li Y, et al. A novel GLP-1 and FGF21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis.
EBioMedicine 2021;63:103202.
106. Finan B, Yang B, Ottaway N, et al. Targeted estrogen delivery reverses the metabolic syndrome.
Nat Med 2012;18:1847–1856.
107. Quarta C, Clemmensen C, Zhu Z, et al. Molecular integration of incretin and glucocorticoid action reverses immunometabolic dysfunction and obesity.
Cell Metab 2017;26:620–632.
108. Chodorge M, Celeste AJ, Grimsby J, et al. Engineering of a GLP-1 analogue peptide/anti-PCSK9 antibody fusion for type 2 diabetes treatment.
Sci Rep 2018;8:17545.
109. Clemmensen C, Finan B, Fischer K, et al. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice.
EMBO Mol Med 2015;7:288–298.
110. Jouihan H, Will S, Guionaud S, et al. Superior reductions in hepatic steatosis and fibrosis with co-administration of a glucagon-like peptide-1 receptor agonist and obeticholic acid in mice.
Mol Metab 2017;6:1360–1370.
111. Frías JP, Guja C, Hardy E, et al. Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial.
Lancet Diabetes Endocrinol 2016;4:1004–1016.